Truncated spectral regularization for an ill-posed non-linear parabolic problem
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 2, page 545-569
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topJana, Ajoy, and Nair, M. Thamban. "Truncated spectral regularization for an ill-posed non-linear parabolic problem." Czechoslovak Mathematical Journal 69.2 (2019): 545-569. <http://eudml.org/doc/294207>.
@article{Jana2019,
abstract = {It is known that the nonlinear nonhomogeneous backward Cauchy problem $u_t(t)+Au(t)=f(t,u(t))$, $0\le t<\tau $ with $u(\tau )=\phi $, where $A$ is a densely defined positive self-adjoint unbounded operator on a Hilbert space, is ill-posed in the sense that small perturbations in the final value can lead to large deviations in the solution. We show, under suitable conditions on $\phi $ and $f$, that a solution of the above problem satisfies an integral equation involving the spectral representation of $A$, which is also ill-posed. Spectral truncation is used to obtain regularized approximations for the solution of the integral equation, and error analysis is carried out with exact and noisy final value $\phi $. Also stability estimates are derived under appropriate parameter choice strategies. This work extends and generalizes many of the results available in the literature, including the work by Tuan (2010) for linear homogeneous final value problem and the work by Jana and Nair (2016b) for linear nonhomogeneous final value problem.},
author = {Jana, Ajoy, Nair, M. Thamban},
journal = {Czechoslovak Mathematical Journal},
keywords = {ill-posed problem; nonlinear parabolic equation; regularization; parameter choice; semigroup; contraction principle},
language = {eng},
number = {2},
pages = {545-569},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Truncated spectral regularization for an ill-posed non-linear parabolic problem},
url = {http://eudml.org/doc/294207},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Jana, Ajoy
AU - Nair, M. Thamban
TI - Truncated spectral regularization for an ill-posed non-linear parabolic problem
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 2
SP - 545
EP - 569
AB - It is known that the nonlinear nonhomogeneous backward Cauchy problem $u_t(t)+Au(t)=f(t,u(t))$, $0\le t<\tau $ with $u(\tau )=\phi $, where $A$ is a densely defined positive self-adjoint unbounded operator on a Hilbert space, is ill-posed in the sense that small perturbations in the final value can lead to large deviations in the solution. We show, under suitable conditions on $\phi $ and $f$, that a solution of the above problem satisfies an integral equation involving the spectral representation of $A$, which is also ill-posed. Spectral truncation is used to obtain regularized approximations for the solution of the integral equation, and error analysis is carried out with exact and noisy final value $\phi $. Also stability estimates are derived under appropriate parameter choice strategies. This work extends and generalizes many of the results available in the literature, including the work by Tuan (2010) for linear homogeneous final value problem and the work by Jana and Nair (2016b) for linear nonhomogeneous final value problem.
LA - eng
KW - ill-posed problem; nonlinear parabolic equation; regularization; parameter choice; semigroup; contraction principle
UR - http://eudml.org/doc/294207
ER -
References
top- Boussetila, N., Rebbani, F., 10.1515/GMJ.2007.627, Georgian Math. J. 14 (2007), 627-642. (2007) Zbl1132.35405MR2389024DOI10.1515/GMJ.2007.627
- Clark, G. W., Oppenheimer, S. F., Quasireversibility methods for non-well-posed problems, Electron. J. Differ. Equ. 1994 (1994), 9 pages. (1994) Zbl0811.35157MR1302574
- Denche, M., Bessila, K., 10.1016/j.jmaa.2004.08.001, J. Math. Anal. Appl. 301 (2005), 419-426. (2005) Zbl1084.34536MR2105682DOI10.1016/j.jmaa.2004.08.001
- Denche, M., Djezzar, S., 10.1155/BVP/2006/37524, Bound. Value Probl. 2006 (2006), Article ID 37524, 8 pages. (2006) Zbl1140.34397MR2211398DOI10.1155/BVP/2006/37524
- Fury, M. A., Modified quasi-reversibility method for nonautonomous semilinear problems, Electron. J. Diff. Eqns., Conf. 20 (2013), 65-78. (2013) Zbl06283623MR3128069
- Goldstein, J. A., Semigroups of Linear Operators and Applications, Oxford Mathematical Monographs, Oxford University Press, Oxford (1985). (1985) Zbl0592.47034MR0790497
- Jana, A., Nair, M. T., 10.1080/01630563.2016.1216448, Numer. Funct. Anal. Optim. 37 (2016), 1529-1550. (2016) Zbl1377.35175MR3579019DOI10.1080/01630563.2016.1216448
- Jana, A., Nair, M. T., 10.1016/j.jmaa.2016.01.069, J. Math. Anal. Appl. 438 (2016), 351-372. (2016) Zbl1382.35144MR3462582DOI10.1016/j.jmaa.2016.01.069
- Jana, A., Nair, M. T., 10.1007/s41478-018-0080-y, (to appear) in J. Anal. DOI10.1007/s41478-018-0080-y
- Lattès, R., Lions, J.-L., Méthode de quasi-réversibilité et applications, Travaux et Recherches Mathématiques 15, Dunod, Paris French (1967). (1967) Zbl0159.20803MR0232549
- Miller, K., 10.1007/bfb0069627, Lect. Notes Math. 316, Springer, Berlin (1973), 161-176. (1973) Zbl0279.35004MR0393903DOI10.1007/bfb0069627
- Nam, P. T., 10.1016/j.jmaa.2010.01.020, J. Math. Anal. Appl. 367 (2010), 337-349. (2010) Zbl1194.35494MR2607262DOI10.1016/j.jmaa.2010.01.020
- Pazy, A., 10.1007/978-1-4612-5561-1, Applied Mathematical Sciences 44, Springer, New York (1983). (1983) Zbl0516.47023MR0710486DOI10.1007/978-1-4612-5561-1
- Perko, L., 10.1007/978-1-4613-0003-8, Texts in Applied Mathematics 7, Springer, New York (2001). (2001) Zbl0973.34001MR1801796DOI10.1007/978-1-4613-0003-8
- Showalter, R. E., 10.1016/0022-247X(74)90008-0, J. Math. Anal. Appl. 47 (1974), 563-572. (1974) Zbl0296.34059MR0352644DOI10.1016/0022-247X(74)90008-0
- Tuan, N. H., Regularization for a class of backward parabolic problems, Bull. Math. Anal. Appl. 2 (2010), 18-26. (2010) Zbl1312.35189MR2658124
- Tuan, N. H., Trong, D. D., 10.1007/s10587-011-0019-9, Czech. Math. J. 61 (2011), 85-95. (2011) Zbl1224.35165MR2782761DOI10.1007/s10587-011-0019-9
- Tuan, N. H., Trong, D. D., Quan, P. H., 10.1016/j.na.2010.05.025, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 1966-1972. (2010) Zbl1197.35306MR2674176DOI10.1016/j.na.2010.05.025
- Yosida, K., 10.1007/978-3-642-96208-0, Grundlehren der Mathematischen Wissenschaften 123, Springer, Berlin (1980). (1980) Zbl0435.46002MR0617913DOI10.1007/978-3-642-96208-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.