Null controllability of a nonlinear diffusion system in reactor dynamics

Kumarasamy Sakthivel; Krishnan Balachandran; Jong-Yeoul Park; Ganeshan Devipriya

Kybernetika (2010)

  • Volume: 46, Issue: 5, page 890-906
  • ISSN: 0023-5954

Abstract

top
In this paper, we prove the exact null controllability of certain diffusion system by rewriting it as an equivalent nonlinear parabolic integrodifferential equation with variable coefficients in a bounded interval of with a distributed control acting on a subinterval. We first prove a global null controllability result of an associated linearized integrodifferential equation by establishing a suitable observability estimate for adjoint system with appropriate assumptions on the coefficients. Then this result is successfully used with some estimates for parabolic equation in L k spaces together with classical fixed point theorem, to prove the null controllability of the nonlinear model.

How to cite

top

Sakthivel, Kumarasamy, et al. "Null controllability of a nonlinear diffusion system in reactor dynamics." Kybernetika 46.5 (2010): 890-906. <http://eudml.org/doc/196372>.

@article{Sakthivel2010,
abstract = {In this paper, we prove the exact null controllability of certain diffusion system by rewriting it as an equivalent nonlinear parabolic integrodifferential equation with variable coefficients in a bounded interval of $\mathbb \{R\}$ with a distributed control acting on a subinterval. We first prove a global null controllability result of an associated linearized integrodifferential equation by establishing a suitable observability estimate for adjoint system with appropriate assumptions on the coefficients. Then this result is successfully used with some estimates for parabolic equation in $L^k$ spaces together with classical fixed point theorem, to prove the null controllability of the nonlinear model.},
author = {Sakthivel, Kumarasamy, Balachandran, Krishnan, Park, Jong-Yeoul, Devipriya, Ganeshan},
journal = {Kybernetika},
keywords = {controllability; observability; parabolic integrodifferential equation; controllability; observability; parabolic integrodifferential equation},
language = {eng},
number = {5},
pages = {890-906},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Null controllability of a nonlinear diffusion system in reactor dynamics},
url = {http://eudml.org/doc/196372},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Sakthivel, Kumarasamy
AU - Balachandran, Krishnan
AU - Park, Jong-Yeoul
AU - Devipriya, Ganeshan
TI - Null controllability of a nonlinear diffusion system in reactor dynamics
JO - Kybernetika
PY - 2010
PB - Institute of Information Theory and Automation AS CR
VL - 46
IS - 5
SP - 890
EP - 906
AB - In this paper, we prove the exact null controllability of certain diffusion system by rewriting it as an equivalent nonlinear parabolic integrodifferential equation with variable coefficients in a bounded interval of $\mathbb {R}$ with a distributed control acting on a subinterval. We first prove a global null controllability result of an associated linearized integrodifferential equation by establishing a suitable observability estimate for adjoint system with appropriate assumptions on the coefficients. Then this result is successfully used with some estimates for parabolic equation in $L^k$ spaces together with classical fixed point theorem, to prove the null controllability of the nonlinear model.
LA - eng
KW - controllability; observability; parabolic integrodifferential equation; controllability; observability; parabolic integrodifferential equation
UR - http://eudml.org/doc/196372
ER -

References

top
  1. Adams, R. A., Fournier, J. F., Sobolev Spaces, Second edition. Academic Press, New York 2003. (2003) Zbl1098.46001MR2424078
  2. Anita, S., Barbu, V., 10.1051/cocv:2000105, ESAIM: Control, Optimization and Calculus of Variations 5 (2000), 157–173. (2000) MR1744610DOI10.1051/cocv:2000105
  3. Balachandran, K., Dauer, J. P., 10.1023/A:1019668728098, J. Optim. Theory Appl. 115 (2002), 7–28. (2002) Zbl1023.93010MR1937343DOI10.1023/A:1019668728098
  4. Barbu, V., 10.1007/s002450010004, Appl. Math. Optim. 42 (2000), 73–89. (2000) MR1751309DOI10.1007/s002450010004
  5. Barbu, V., Controllability of parabolic and Navier–Stokes equations, Sci. Math. Japon. 56 (2002), 143–211. (2002) Zbl1010.93054MR1911840
  6. Barbu, V., Iannelli, M., Controllability of the heat equation with memory, Differential and Integral Equations 13 (2000), 1393–1412. (2000) Zbl0990.93008MR1787073
  7. Bardos, C., Lebeau, G., Rauch, J., Controle et stabilisation de l’equation des ondes, SIAM J. Control Optim. 30 (1992), 1024–1065. (1992) MR1178650
  8. Beceanu, M., 10.1155/S1085337503303033, Abstract Appl. Anal. 14 (2003), 793–811. (2003) Zbl1070.93025MR2009498DOI10.1155/S1085337503303033
  9. Chae, D., Imanuvilov, O. Yu., Kim, S. M., 10.1007/BF02254698, J. Dynamical and Control Systems 2 (1996), 449–483. (1996) Zbl0946.93007MR1420354DOI10.1007/BF02254698
  10. Fattorini, H. O., Sritharan, S. S., Necessary and sufficient conditions for optimal controls in viscous flow problems, Proc. Royal Soc. London A 124 (1994), 211–251. (1994) Zbl0800.49047MR1273746
  11. Fernández-Cara, E., Guerrero, S., 10.1137/S0363012904439696, SIAM J. Control Optim. 45 (2006), 1395–1446. (2006) Zbl1121.35017MR2257228DOI10.1137/S0363012904439696
  12. Fernández-Cara, E., Zuazua, E., The cost of approximate controllability for heat equations: The linear case, Adv. in Differential Equations 5 (2000), 465–514. (2000) MR1750109
  13. Fernández-Cara, E., Zuazua, E., 10.1016/S0294-1449(00)00117-7, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), 583–616. (2000) MR1791879DOI10.1016/S0294-1449(00)00117-7
  14. Fursikov, A. V., Imanuvilov, O. Yu., Controllability of Evolution Equations, Lecture Notes Ser., Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul 1996. (1996) Zbl0862.49004MR1406566
  15. Imanuvilov, O. Yu., Yamamoto, M., 10.2977/prims/1145476103, Publications of RIMS, Kyoto University 39 (2003), 227–274. (2003) Zbl1065.35079MR1987865DOI10.2977/prims/1145476103
  16. Komorník, V., Exact Controllability and Stabilization: The Multiplier Method, John Wiley, Paris 1995. (1995) MR1359765
  17. Ladyzenskaya, O. A., Solonikov, V. A., Uralceva, N., Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, Providence 1968. (1968) 
  18. Lebeau, G., Robbiano, L., 10.1080/03605309508821097, Comm. Partial Differential Equations 20 (1995), 335–356. (1995) Zbl0884.35049MR1312710DOI10.1080/03605309508821097
  19. Lions, J. L., Controlabilité exacte, stabilisation et perturbations the systémes distribués, Tome 1 and Tome 2. Masson 1988. (1988) 
  20. Pachpatte, B. G., 10.1016/0022-247X(83)90078-1, J. Math. Anal. Appl. 94 (1983), 501–508. (1983) Zbl0524.35055MR0706380DOI10.1016/0022-247X(83)90078-1
  21. Pao, C. V., 10.1080/00036817908839258, Appl. Anal. 9 (1979), 107–119. (1979) MR0539536DOI10.1080/00036817908839258
  22. Sakthivel, K., Balachandran, K., Sritharan, S. S., 10.1016/j.camwa.2006.11.007, Comp. and Math. Appl. 52 (2006), 1299–1316. (2006) Zbl1119.93020MR2307079DOI10.1016/j.camwa.2006.11.007
  23. Sakthivel, K., Balachandran, K., Sritharan, S. S., Exact controllability of nonlinear diffusion equations arising in reactor dynamics, Nonlinear Anal.: Real World Appl. 9 (2008) 2029–2054. (2008) Zbl1156.93321MR2441765
  24. Sakthivel, K., Balachandran, K., Nagaraj, B. R., 10.1080/00207170701447114, Internat. J. Control 81 (2008), 764–777. (2008) MR2406883DOI10.1080/00207170701447114
  25. Simon, J., Compact sets in the space L p ( 0 ; T ; B ) , Ann. Mat. Pura Appl. 146 (1986), 65–96. (1986) MR0916688
  26. Tataru, D., 10.1007/BF01215993, Appl. Math. Optim. 31 (1995), 257–295. (1995) MR1316260DOI10.1007/BF01215993
  27. Yanik, E. G., Fairweather, G., 10.1016/0362-546X(88)90039-9, Nonlinear Anal. 12 (1988), 785–809. (1988) MR0954953DOI10.1016/0362-546X(88)90039-9
  28. Yong, J., Zhang, X., Exact controllability of the heat equation with hyperbolic memory kernel, Control Theory of Partial Differential Equations. Chapman & Hall/CRC, Boca Raton 2005, pp. 387–401. (2005) Zbl1085.35038MR2149174
  29. Zuazua, E., 10.1016/S1874-5717(07)80010-7, In: Handbook of Differential Equations: Evolutionary Equations 3 (2007), 527–621. (2007) MR2549374DOI10.1016/S1874-5717(07)80010-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.