Null controllability of nonlinear convective heat equations

Sebastian Anita; Viorel Barbu

ESAIM: Control, Optimisation and Calculus of Variations (2000)

  • Volume: 5, page 157-173
  • ISSN: 1292-8119

How to cite

top

Anita, Sebastian, and Barbu, Viorel. "Null controllability of nonlinear convective heat equations." ESAIM: Control, Optimisation and Calculus of Variations 5 (2000): 157-173. <http://eudml.org/doc/90564>.

@article{Anita2000,
author = {Anita, Sebastian, Barbu, Viorel},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Carleman estimates; interpolation inequality; Kakutani fixed point theorem; nonlinear partial differential equation; exact null controllability},
language = {eng},
pages = {157-173},
publisher = {EDP Sciences},
title = {Null controllability of nonlinear convective heat equations},
url = {http://eudml.org/doc/90564},
volume = {5},
year = {2000},
}

TY - JOUR
AU - Anita, Sebastian
AU - Barbu, Viorel
TI - Null controllability of nonlinear convective heat equations
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2000
PB - EDP Sciences
VL - 5
SP - 157
EP - 173
LA - eng
KW - Carleman estimates; interpolation inequality; Kakutani fixed point theorem; nonlinear partial differential equation; exact null controllability
UR - http://eudml.org/doc/90564
ER -

References

top
  1. [1] R.A. Adams, Sobolev Spaces. Academic Press, New York ( 1975). Zbl0314.46030MR450957
  2. [2] V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, Boston ( 1993). Zbl0776.49005MR1195128
  3. [3] V. Barbu, Exact controllability of the superlinear heat equation. Appl. Math. Optim., to appear. Zbl0964.93046MR1751309
  4. [4] V. Barbu, T. Precupanu, Convexity and Optimization in Banach Spaces. D. Reidel Publ. Company, Dordrecht ( 1986). Zbl0594.49001MR860772
  5. [5] H. Brézis and A. Friedman, Nonlinear parabolic equations involving measures as initial conditions. J. Math. Pures Appl. 62 ( 1983) 73-97. Zbl0527.35043MR700049
  6. [6] K. Deimling, Nonlinear Functional Analysis. Springer-Verlag, Berlin ( 1985). Zbl0559.47040MR787404
  7. [7] C. Fabre, J.P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation, Proceedings Royal Soc. Edinburgh 125 A ( 1995) 31-61. Zbl0818.93032MR1318622
  8. [8] E. Fernández-Cara, Null controllability of the semilinear heat equation. ESAIM Control. Optim. Calc. Var. 2 ( 1997) 87-107. Zbl0897.93011MR1445385
  9. [9] E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: The linear case. Adv. Diff. Equations, to appear. Zbl1007.93034MR1750109
  10. [10] E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. Zbl0970.93023MR1791879
  11. [11] A.V. Fursikov and O.Yu. Imanuvilov, Controllability of Evolution Equations. RIM Seoul National University, Korea, Lecture Notes Ser. 34 ( 1996). Zbl0862.49004MR1406566
  12. [12] O.Yu. Imanuvilov and M. Yamamoto, On Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, preprint #98 - 46. University of Tokyo, Grade School of Mathematics, Komobo, Tokyo, Japan ( 1998). Zbl1065.35079MR1987865
  13. [13] O.A. Ladyzenskaya, V.A. Solonnikov and N.N. Uraltzeva, Linear and Quasilinear Equations of Paraboic Type. Nauka, Moskow ( 1967). Zbl0164.12302
  14. [14] G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur. Comm. Partial Differential Equations 30 ( 1995) 335-357. Zbl0819.35071MR1312710
  15. [15] J.L. Lions, Controle des systèmes distribués singuliers, MMI 13. Gauthier-Villars ( 1983). Zbl0514.93001MR712486
  16. [16] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris ( 1968). Zbl0165.10801MR247243
  17. [17] E. Zuazua, Approximate controllability of the semilinear heat équation: boundary control, in Computational Sciences for the 21st Century, M.O. Bristeau et al, Eds. John Wiley & Sons ( 1997) 738-747. Zbl0916.93016
  18. [18] E. Zuazua, Approximate controllability for semilinear heat equations with globally Lipschitz nonlinearities. Control Cybernet., to appear. Zbl0959.93025MR1782020

Citations in EuDML Documents

top
  1. Kumarasamy Sakthivel, Krishnan Balachandran, Rangarajan Sowrirajan, Jeong-Hoon Kim, On exact null controllability of Black-Scholes equation
  2. Kumarasamy Sakthivel, Krishnan Balachandran, Jong-Yeoul Park, Ganeshan Devipriya, Null controllability of a nonlinear diffusion system in reactor dynamics
  3. Sergio Guerrero, Local exact controllability to the trajectories of the Navier-Stokes system with nonlinear Navier-slip boundary conditions
  4. Anna Doubova, A. Osses, J.-P. Puel, Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients
  5. Alexander Y. Khapalov, Global non-negative controllability of the semilinear parabolic equation governed by bilinear control
  6. Muriel Boulakia, Axel Osses, Local null controllability of a two-dimensional fluid-structure interaction problem
  7. Alexander Y. Khapalov, Global non-negative controllability of the semilinear parabolic equation governed by bilinear control
  8. Muriel Boulakia, Axel Osses, Local null controllability of a two-dimensional fluid-structure interaction problem
  9. Anna Doubova, A. Osses, J.-P. Puel, Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients
  10. Piermarco Cannarsa, Patrick Martinez, Judith Vancostenoble, Null controllability of the heat equation in unbounded domains by a finite measure control region

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.