Curvature functionals for curves in the equi-affine plane

Steven Verpoort

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 2, page 419-435
  • ISSN: 0011-4642

Abstract

top
After having given the general variational formula for the functionals indicated in the title, the critical points of the integral of the equi-affine curvature under area constraint and the critical points of the full-affine arc-length are studied in greater detail. Notice. An extended version of this article is available on arXiv:0912.4075.

How to cite

top

Verpoort, Steven. "Curvature functionals for curves in the equi-affine plane." Czechoslovak Mathematical Journal 61.2 (2011): 419-435. <http://eudml.org/doc/196380>.

@article{Verpoort2011,
abstract = {After having given the general variational formula for the functionals indicated in the title, the critical points of the integral of the equi-affine curvature under area constraint and the critical points of the full-affine arc-length are studied in greater detail. Notice. An extended version of this article is available on arXiv:0912.4075.},
author = {Verpoort, Steven},
journal = {Czechoslovak Mathematical Journal},
keywords = {curvature functionals; variational problems; affine curves; curvature functional; variational problem; affine curve},
language = {eng},
number = {2},
pages = {419-435},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Curvature functionals for curves in the equi-affine plane},
url = {http://eudml.org/doc/196380},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Verpoort, Steven
TI - Curvature functionals for curves in the equi-affine plane
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 419
EP - 435
AB - After having given the general variational formula for the functionals indicated in the title, the critical points of the integral of the equi-affine curvature under area constraint and the critical points of the full-affine arc-length are studied in greater detail. Notice. An extended version of this article is available on arXiv:0912.4075.
LA - eng
KW - curvature functionals; variational problems; affine curves; curvature functional; variational problem; affine curve
UR - http://eudml.org/doc/196380
ER -

References

top
  1. Abramowitz, M., Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Tenth Printing), National Bureau of Standards, Washington (1972). (1972) MR0757537
  2. Arreaga, G., Capovilla, R., Chryssomalakos, C., Guven, J., 10.1103/PhysRevE.65.031801, Physical Review E 65 (2002), 14 pages. (2002) DOI10.1103/PhysRevE.65.031801
  3. Blaschke, W., Vorlesungen über Differentialgeometrie. I: Elementare Differentialgeometrie, Springer, Berlin (1923). (1923) 
  4. Blaschke, W., Vorlesungen über Differentialgeometrie. II: Affine Differentialgeometrie, Springer, Berlin (1923). (1923) 
  5. Blaschke, W., Vorlesungen über Differentialgeometrie. III: Differentialgeometrie der Kreise und Kugeln, Springer, Berlin (1929). (1929) 
  6. Blaschke, W., Ebene Kinematik (Eine Vorlesung), Teubner, Leipzig (1938). (1938) 
  7. Bol, G., Beantwoording van Prijsvraag 13, 1934, Nieuw Archief voor Wiskunde 20 (1940), 113-162. (1940) MR0001045
  8. Bottema, O., Vlakke Krommen met de Affiene Natuurlijke Vergelijking k = c ( s ) , Nieuw Archief voor Wiskunde 21 (1941), 89-100. (1941) MR0017999
  9. Cartan, É., Sur un Problème du Calcul des Variations en Géométrie Projective Plane, Matematicheskii Sbornik 34 (1927), 349-364. (1927) 
  10. Gălugăreanu, G., Gheorghiu, G. T., Sur l'Interprétation Géométrique des Invariants Différentiels Fondamentaux en Géométrie Affine et Projective des Courbes Planes, Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie 43 (1941), 69-83. (1941) MR0012877
  11. Huang, Rongpei, A Note on the Generalized Subaffine Elastica in 2 , Chinese Quarterly Journal of Mathematics. Shuxue Jikan 18 (2003), 88-92. (2003) MR2002097
  12. Heil, E., Abschätzungen für einige Affininvarianten konvexer Kurven, Monatshefte für Mathematik {71} (1967), 405-423. (1967) Zbl0153.50902MR0230233
  13. Leichtweiss, K., The Affine Geometry of Convex Bodies, Johann Ambrosius Barth, Heidelberg (1998). (1998) MR1630116
  14. Li, An-Min, 10.1007/BF03323248, Results in Mathematics 13 (1988), 318-326. (1988) MR0941338DOI10.1007/BF03323248
  15. Li, An-Min, Simon, U., Zhao, Guo-Song, Global Affine Differential Geometry of Hypersurfaces, De Gruyter Expositions in Mathematics 11. Walter de Gruyter, Berlin (1993). (1993) MR1257186
  16. Mihăilescu, T., Géométrie Différentielle Affine des Courbes Planes, Czech. Math. J. 9 (1959), 84 265-288. (1959) MR0105704
  17. Mihăilescu, T., Sobre la Variación del Arco Afín de las Curvas Planas, Mathematicae Notae 17 (1959/1961), 59-81. (1959) MR0146691
  18. Schirokow, A. P., Schirokow, P. A., Affine Differentialgeometrie, B.G. Teubner, Leipzig (1962). (1962) Zbl0106.14703MR0150666
  19. Tutaev, L. K., Lines and Surfaces in Three-Dimensional Affine Space, Israel Program for Scientific Translations, Jerusalem (1964). (1964) MR0180927
  20. Whittaker, E. T., Watson, G. N., A Course of Modern Analysis: an Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions, Third Edition, Cambridge University Press (1920). (1920) MR1424469
  21. Verpoort, S., Curvature Functionals for Curves in the Equi-Affine Plane (an extended version of the current article), arXiv:0912.4075. MR2905414

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.