General-affine invariants of plane curves and space curves
Shimpei Kobayashi; Takeshi Sasaki
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 1, page 67-104
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKobayashi, Shimpei, and Sasaki, Takeshi. "General-affine invariants of plane curves and space curves." Czechoslovak Mathematical Journal 70.1 (2020): 67-104. <http://eudml.org/doc/297149>.
@article{Kobayashi2020,
abstract = {We present a fundamental theory of curves in the affine plane and the affine space, equipped with the general-affine groups $\{\rm GA\}(2)=\{\rm GL\}(2,\{\mathbb \{R\}\})\ltimes \{\mathbb \{R\}\}^2$ and $\{\rm GA\}(3)=\{\rm GL\}(3,\{\mathbb \{R\}\})\ltimes \{\mathbb \{R\}\}^3$, respectively. We define general-affine length parameter and curvatures and show how such invariants determine the curve up to general-affine motions. We then study the extremal problem of the general-affine length functional and derive a variational formula. We give several examples of curves and also discuss some relations with equiaffine treatment and projective treatment of curves.},
author = {Kobayashi, Shimpei, Sasaki, Takeshi},
journal = {Czechoslovak Mathematical Journal},
keywords = {plane curve; space curve; general-affine group; general-affine curvature; variational problem},
language = {eng},
number = {1},
pages = {67-104},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {General-affine invariants of plane curves and space curves},
url = {http://eudml.org/doc/297149},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Kobayashi, Shimpei
AU - Sasaki, Takeshi
TI - General-affine invariants of plane curves and space curves
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 1
SP - 67
EP - 104
AB - We present a fundamental theory of curves in the affine plane and the affine space, equipped with the general-affine groups ${\rm GA}(2)={\rm GL}(2,{\mathbb {R}})\ltimes {\mathbb {R}}^2$ and ${\rm GA}(3)={\rm GL}(3,{\mathbb {R}})\ltimes {\mathbb {R}}^3$, respectively. We define general-affine length parameter and curvatures and show how such invariants determine the curve up to general-affine motions. We then study the extremal problem of the general-affine length functional and derive a variational formula. We give several examples of curves and also discuss some relations with equiaffine treatment and projective treatment of curves.
LA - eng
KW - plane curve; space curve; general-affine group; general-affine curvature; variational problem
UR - http://eudml.org/doc/297149
ER -
References
top- Bagderina, Y. Y., 10.1111/j.1467-9590.2008.00400.x, Stud. Appl. Math. 120 (2008), 293-332. (2008) Zbl1196.34047MR2406822DOI10.1111/j.1467-9590.2008.00400.x
- Berzolari, L., 10.1007/BF02346203, Annali di Math., Ser 2 Italian 26 (1897), 1-58 9999JFM99999 28.0584.04. (1897) DOI10.1007/BF02346203
- Blaschke, W., Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie. II. Affine Differentialgeometrie, bearbeitet von K. Reidemeister, Springer, Berlin German (1923),9999JFM99999 49.0499.01. (1923) MR0015247
- Bol, G., Projektive Differentialgeometrie. I. Teil, Vandenhoeck & Ruprecht, Göttingen German (1950). (1950) Zbl0035.23401MR0034066
- Calugareanu, G., Gheorghiu, G. T., Sur l'interprétation géométrique des invariants différentiels fondamentaux en géométrie affine et projective des courbes planes, Bull. Math. Soc. Roum. Sci. 43 French (1941), 69-83. (1941) Zbl0060.36603MR0012877
- Cartan, E., Sur un problème du calcul des variations en géométrie projective plane, Moscou, Rec. Math. 34 French (1927), 349-364 9999JFM99999 53.0486.01. (1927)
- Cartan, E., Lecons sur la théorie des espaces à connexion projective, Cahiers scient. 17, Gauthier-Villars. VI, Paris French (1937). (1937) Zbl0016.07603MR0041456
- Chazy, J., 10.1007/BF02393131, Acta Math. 34 French (1911), 317-385 9999JFM99999 42.0340.03. (1911) MR1555070DOI10.1007/BF02393131
- Chou, K.-S., Qu, C., 10.1016/S0167-2789(01)00364-5, Physica D 162 (2002), 9-33. (2002) Zbl0987.35139MR1882237DOI10.1016/S0167-2789(01)00364-5
- Fubini, G., Čech, E., Introduction à la géométrie projective différentielle des surfaces, Gauthier-Villars and Cie VI, Paris French (1931). (1931) Zbl0005.31102MR1562218
- Griffiths, P. A., 10.1007/978-1-4615-8166-6, Progress in Mathematics 25, Birkhäuser/Springer, Basel (1983). (1983) Zbl0512.49003MR0684663DOI10.1007/978-1-4615-8166-6
- Halphen, G. H., Sur les invariants différentielles, Oeuvre II Gauthier-Villars, Paris French (1918), 197-257 9999JFM99999 46.1418.01. (1918)
- Izumiya, S., Sano, T., 10.1017/S0013091500019672, Proc. Edinb. Math. Soc., II. Ser. 41 (1998), 315-324. (1998) Zbl0965.53013MR1626425DOI10.1017/S0013091500019672
- Kimpara, M., 10.11429/ppmsj1919.19.0_977, Proc. Phys.-Math. Soc. Japan, III. Ser. 19 French (1937), 977-983. (1937) Zbl0018.08802DOI10.11429/ppmsj1919.19.0_977
- Lane, E. P., A Treatise on Projective Differential Geometry, University of Chicago Press, Chicago (1942). (1942) Zbl0063.03443MR0007286
- Beffa, G. Marí, 10.1016/j.physd.2008.08.009, Physica D 238 (2009), 100-115. (2009) Zbl1163.37023MR2571970DOI10.1016/j.physd.2008.08.009
- Mihăilescu, T., Géométrie différentielle affine des courbes planes, Czech. Math. J. 9 French (1959), 265-288. (1959) Zbl0089.17002MR0105704
- Mihăilescu, T., Sobre la variacion del arco afin de las curvas planas, Math. Notae 17 Spanish (1961), 59-81. (1961) Zbl0108.34202MR0146691
- Mihăilescu, T., Geometria diferencial afin general de las curvas alabeadas, Math. Notae 18 Spanish (1963), 23-70. (1963) Zbl0114.37102MR0156269
- Monge, G., Sur les équations différentielles des courbes du second degré, Corresp. sur l'École imp. Polytechnique Klostermann, Paris M. Hachette French (1810), 51-54. (1810)
- Musso, E., 10.3842/SIGMA.2012.030, SIGMA, Symmetry Integrability Geom. Methods Appl. 8 (2012), paper 030, 20 pages. (2012) Zbl1246.53012MR2942809DOI10.3842/SIGMA.2012.030
- Musso, E., Grant, J. D. E., 10.1016/j.geomphys.2003.10.005, J. Geom. Phys. 50 (2004), 303-338. (2004) Zbl1076.58011MR2078230DOI10.1016/j.geomphys.2003.10.005
- Musso, E., Nicolodi, L., 10.1515/form.2005.17.4.569, Forum Math. 17 (2005), 569-590. (2005) Zbl1084.53012MR2154420DOI10.1515/form.2005.17.4.569
- Nomizu, K., Sasaki, T., Affine Differential Geometry, Cambridge Tracts in Mathematics 111, Cambridge University Press, Cambridge (1994). (1994) Zbl0834.53002MR1311248
- Olver, P. J., Sapiro, G., Tannenbaum, A., Classification and uniqueness of invariant geometric flows, C. R. Acad. Sci., Paris, Sér. I 319 (1994), 339-344. (1994) Zbl0863.53008MR1289308
- Ovsienko, V., Tabachnikov, S., 10.1017/CBO9780511543142, Cambridge Tracts in Mathematics 165, Cambridge University Press, Cambridge (2005). (2005) Zbl1073.53001MR2177471DOI10.1017/CBO9780511543142
- Polyanin, A. D., Zaitsev, V. F., 10.1201/9781420035339, CRC Press, Boca Raton (1995). (1995) Zbl0855.34001MR1396087DOI10.1201/9781420035339
- Sasaki, S., 10.4099/jjm1924.13.0_473, Jap. J. Math. 13 (1937), 473-481. (1937) Zbl0018.17003DOI10.4099/jjm1924.13.0_473
- Sasaki, T., Projective Differential Geometry and Linear Homogeneous Differential Equations, Rokko Lectures in Mathematics 5, Kobe University (1999). (1999)
- Schirokow, P. A., Schirokow, A. P., Affine Differentialgeometrie, B. G. Teubner, Leipzig German (1962). (1962) Zbl0106.14703MR0150666
- Thorbergsson, G., Umehara, M., 10.1017/S0027763000025435, Nagoya Math. J. 167 (2002), 55-94. (2002) Zbl1088.53049MR1924719DOI10.1017/S0027763000025435
- Verpoort, S., 10.1007/s10587-011-0064-4, Czech. Math. J. 61 (2011), 419-435. (2011) Zbl1249.49028MR2905414DOI10.1007/s10587-011-0064-4
- Wilczynski, E. J., 10.1007/BF01736764, B. G. Teubner, Leipzig German (1906),9999JFM99999 37.0620.02. (1906) MR0131232DOI10.1007/BF01736764
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.