Arithmetic properties of Fibonacci numbers

Michal Křížek; Florian Luca; Lawrence Somer

Pokroky matematiky, fyziky a astronomie (2005)

  • Volume: 50, Issue: 2, page 127-140
  • ISSN: 0032-2423

How to cite

top

Křížek, Michal, Luca, Florian, and Somer, Lawrence. "Aritmetické vlastnosti Fibonacciových čísel." Pokroky matematiky, fyziky a astronomie 50.2 (2005): 127-140. <http://eudml.org/doc/196391>.

@article{Křížek2005,
author = {Křížek, Michal, Luca, Florian, Somer, Lawrence},
journal = {Pokroky matematiky, fyziky a astronomie},
keywords = {Fibonacci number; Lucas number; Fibonacci number; Lucas number},
language = {cze},
number = {2},
pages = {127-140},
publisher = {Jednota českých matematiků a fyziků},
title = {Aritmetické vlastnosti Fibonacciových čísel},
url = {http://eudml.org/doc/196391},
volume = {50},
year = {2005},
}

TY - JOUR
AU - Křížek, Michal
AU - Luca, Florian
AU - Somer, Lawrence
TI - Aritmetické vlastnosti Fibonacciových čísel
JO - Pokroky matematiky, fyziky a astronomie
PY - 2005
PB - Jednota českých matematiků a fyziků
VL - 50
IS - 2
SP - 127
EP - 140
LA - cze
KW - Fibonacci number; Lucas number; Fibonacci number; Lucas number
UR - http://eudml.org/doc/196391
ER -

References

top
  1. André-Jeannin, R., Irrationalité de la somme des inverses de certaines suites récurrentes, C. R. Acad. Sci. Paris Sér. I Math. 308 (1989), 539–541. (1989) Zbl0682.10025MR0999451
  2. Badea, C., 10.1017/S0017089500006868, Glasgow Math. J. 29 (1987), 221–228. (1987) Zbl0629.10027MR0901668DOI10.1017/S0017089500006868
  3. Brown, J. L., Zeckendorf’s theorem and some applications, Fibonacci Quart. 2 (1964), 163–168. (1964) Zbl0127.27301
  4. Brousseau, A., Tables of Fibonacci entry points (Parts One and Two), The Fibonacci Association 1965. (1965) 
  5. Bugeaud, Y., Mignotte, M., Siksek, S., 10.1016/j.crma.2004.06.007, C. R. Math. Acad. Sci. Paris 339 (2004), 327–330. (2004) Zbl1113.11010MR2092057DOI10.1016/j.crma.2004.06.007
  6. Bugeaud, Y., Mignotte, M., Siksek, S., Classical and modular approaches to exponential diophantine equations, I. Fibonacci and Lucas perfect powers, Submitted to Ann. of Math. (2004). (2004) Zbl1113.11021
  7. Calda, E., Fibonacciova čísla a Pascalův trojúhelník, Rozhledy mat.-fyz. 71 (1993/94), 15–19. (1993) 
  8. Carmichael, R. D., On the numerical factors of the arithmetic forms α n ± β n , Ann. Math. 15 (1913), No. 2, 30–70. (1913) Zbl44.0247.09MR1502458
  9. Drobot, V., On primes in the Fibonacci sequence, Fibonacci Quart. 38 (2000), 71–72. (2000) Zbl0942.11016MR1738649
  10. Dujella, A., 10.1090/S0002-9939-99-04875-3, Proc. Amer. Math. Soc. 127 (1999), 1999–2005. (1999) Zbl0937.11011MR1605956DOI10.1090/S0002-9939-99-04875-3
  11. Duverney, D., 10.1007/s000170050008, Elem. Math. 52 (1997), 31–36. (1997) Zbl0886.11041MR1438856DOI10.1007/s000170050008
  12. Erdős, P., Graham, R. L., Old and new problems and results in combinatorial number theory, Monographie 28 de L’Enseign. Math., Imprimerie Kundig, Genéve 1980. (1980) Zbl0434.10001MR0592420
  13. Good, I. J., A reciprocal series of Fibonacci numbers, Fibonacci Quart. 12 (1974), 346. (1974) Zbl0292.10009MR0351977
  14. Halton, J. H., On Fibonacci residues, Fibonacci Quart. 2 (1964), 217–218. (1964) Zbl0119.27905
  15. Henrici, P., Discrete variable methods in ordinary differential equations, John Wiley & Sons, New York 1962. (1962) Zbl0112.34901MR0135729
  16. Hogben, L., An introduction to mathematical genetics, Norton, New York 1946. (1946) Zbl0063.02040MR0019906
  17. Hoggatt, V. E., Fibonacci and Lucas numbers, Houghton Mifflin Company, Boston 1969. (1969) Zbl0198.36903
  18. Jarden, D., Recurring sequences: a collection of papers, Riveon Lematematika, Jerusalem 1973. (1973) MR0197383
  19. Jones, J. P., Diophantine representation of the Fibonacci numbers, Fibonacci Quart. 13 (1975), 84–88. (1975) Zbl0301.10010MR0382147
  20. Jones, J. P., Matiyasevich, Y. V., 10.2307/2324421, Amer. Math. Monthly 98 (1991), 689–709. (1991) Zbl0746.03006MR1130680DOI10.2307/2324421
  21. Koshy, T., Fibonacci and Lucas numbers with applications, John Wiley & Sons, Inc., New York 2001. (2001) Zbl0984.11010MR1855020
  22. Křížek, M., Luca, F., Somer, L., 17 lectures on Fermat numbers, Springer-Verlag, New York 2001. (2001) Zbl1010.11002MR1866957
  23. Křížek, M., Šolcová, A., Jak spolu souvisí chaos, fraktály a teorie čísel, Sborník semináře Determinismus a chaos, Herbertov 2005, FS ČVUT, Praha 2005, 96–113. (2005) 
  24. Lagarias, J. C., The set of primes dividing the Lucas numbers has density  2 / 3 , Pacific J. Math. 118 (1985), 449–461. Errata ibid. 162 (1994), 393–396. (1985) Zbl0569.10003MR0789184
  25. Lind, D. A., The quadratic field [ 5 ] and a certain diophantine equation, Fibonacci Quart. 6 (1968), 86–93. (1968) Zbl0174.33801MR0231784
  26. Ljunggren, W., On the diophantine equation x 2 + 4 = A y 2 , Det. Kgl. Norske Vid.S̄elsk. Forh. 24 (1951), 82–84. (1951) Zbl0046.26503MR0049214
  27. London, H., Finkelstein, R., On Fibonacci and Lucas numbers which are perfect powers, Fibonacci Quart. 7 (1969), 476–481, 487. Errata ibid. 8 (1970), 248. (1969) Zbl0206.05402MR0255482
  28. Luca, F., Proposed problem H-596, Advanced Problem Section, Fibonacci Quart. 41 (2003), 187. (2003) 
  29. Luca, F., 10.1007/s00605-002-0490-3, Monatsh. Math. 138 (2003), 209–223. (2003) Zbl1027.11012MR1969517DOI10.1007/s00605-002-0490-3
  30. Luca, F., 10.1216/rmjm/1181070412, Rocky Mountain J. Math. 29 (1999), 1387–1411. (1999) Zbl0978.11010MR1743376DOI10.1216/rmjm/1181070412
  31. Luo, M., On triangular Fibonacci numbers, Fibonacci Quart. 27 (1989), 98–108. (1989) Zbl0673.10007MR0995557
  32. Matiyasevich, Y., Enumerable sets are diophantine, Soviet Math. Dokl. 11 (1970), 354–358. (1970) Zbl0212.33401
  33. Matiyasevich, Y., 10.1007/BF03024472, Math. Intell. 14 (1992), no. 4, 38–45. (1992) Zbl0770.01005MR1188142DOI10.1007/BF03024472
  34. Matiyasevich, Y. V., Guy, R. K., A new formula for  π , Amer. Math. Monthly 93 (1986), 631–635. (1986) Zbl0614.10003MR1712797
  35. McDaniel, W., On Fibonacci and Pell numbers of the form  k x 2 , Fibonacci Quart. 40 (2002), 41–42. (2002) Zbl1068.11010MR1885268
  36. McLaughlin, J., Small prime powers in the Fibonacci sequence, Preprint, Univ. of Illinois 2002. (2002) 
  37. Nemes, I., Pethő, A., Polynomial values in linear recurrences, II, J. Number Theory 24 (1986), 47–53. (1986) Zbl0591.10007MR0852189
  38. Pisano, L., Fibonacci’s Liber abaci, A translation into modern English of Leonardo Pisano’s Book of calculation. Translated by L. E. Sigler, Springer, New York 2002. (2002) Zbl1032.01046MR1923794
  39. Schroeder, M. R., Number theory in science and communication, Springer Series in Information Sci. 7, second edition, Springer, Berlin 1986. (1986) Zbl0613.10001MR0827496
  40. Stewart, C. L., On the representation of an integer in two different bases, J. Reine Angew. Math. 319 (1980), 63–72. (1980) Zbl0426.10008MR0586115
  41. Vajda, S., Fibonacci & Lucas numbers, and the golden section: Theory and applications, John Wiley & Sons, New York 1989. (1989) Zbl0695.10001MR1015938
  42. Vorobiev, N. N., Fibonacci numbers, Birkhäuser, Basel 2002; Nauka, Moskva 1992. (2002) Zbl1014.11012MR1954396
  43. Wall, D. D., 10.2307/2309169, Amer. Math. Monthly 67 (1960), 525–532. (1960) Zbl0101.03201MR0120188DOI10.2307/2309169
  44. Williams, H. C., 10.4153/CMB-1982-053-0, Canad. Math. Bull. 25 (1982), 366–370. (1982) Zbl0491.10009MR0668957DOI10.4153/CMB-1982-053-0
  45. Zhu, Z., Cao, L., Liu, X., Zhu, W., Topological invariance of the Fibonacci sequences of the periodic buds in general Mandelbrot sets, J. Northeast Univ. Na. Sci. 22 (2001), 497–500. (2001) Zbl0989.37529MR1869910

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.