On the sum of powers of Laplacian eigenvalues of bipartite graphs
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 4, page 1161-1169
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhou, Bo, and Ilić, Aleksandar. "On the sum of powers of Laplacian eigenvalues of bipartite graphs." Czechoslovak Mathematical Journal 60.4 (2010): 1161-1169. <http://eudml.org/doc/196400>.
@article{Zhou2010,
abstract = {For a bipartite graph $G$ and a non-zero real $\alpha $, we give bounds for the sum of the $\alpha $th powers of the Laplacian eigenvalues of $G$ using the sum of the squares of degrees, from which lower and upper bounds for the incidence energy, and lower bounds for the Kirchhoff index and the Laplacian Estrada index are deduced.},
author = {Zhou, Bo, Ilić, Aleksandar},
journal = {Czechoslovak Mathematical Journal},
keywords = {Laplacian eigenvalues; incidence energy; Kirchhoff index; Laplacian Estrada index; Laplacian eigenvalue; incidence energy; Kirchhoff index; Laplacian Estrada index},
language = {eng},
number = {4},
pages = {1161-1169},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the sum of powers of Laplacian eigenvalues of bipartite graphs},
url = {http://eudml.org/doc/196400},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Zhou, Bo
AU - Ilić, Aleksandar
TI - On the sum of powers of Laplacian eigenvalues of bipartite graphs
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 4
SP - 1161
EP - 1169
AB - For a bipartite graph $G$ and a non-zero real $\alpha $, we give bounds for the sum of the $\alpha $th powers of the Laplacian eigenvalues of $G$ using the sum of the squares of degrees, from which lower and upper bounds for the incidence energy, and lower bounds for the Kirchhoff index and the Laplacian Estrada index are deduced.
LA - eng
KW - Laplacian eigenvalues; incidence energy; Kirchhoff index; Laplacian Estrada index; Laplacian eigenvalue; incidence energy; Kirchhoff index; Laplacian Estrada index
UR - http://eudml.org/doc/196400
ER -
References
top- Fath-Tabar, G. H., Ashrafi, A. R., Gutman, I., Note on Estrada and -Estrada indices of graphs, Bull. Cl. Sci. Math. Nat., Sci. Math. 34 (2009), 1-16. (2009) MR2609605
- Fiedler, M., Algebraic conectivity of graphs, Czechoslovak Math. J. 23 (1973), 298-305. (1973) MR0318007
- Merris, R., Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197-198 (1994), 143-176. (1994) Zbl0802.05053MR1275613
- Mohar, B., The Laplacian spectrum of graphs, Graph Theory, Combinatorics, and Applications, Vol. 2 Y. Alavi, G. Chartrand, O. R. Oellermann, A. J. Schwenk Wiley New York (1991), 871-898. (1991) Zbl0840.05059MR1170831
- Gutman, I., Das, K. C., The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004), 83-92. (2004) Zbl1053.05115MR2037426
- Gutman, I., Kiani, D., Mirzakhah, M., Zhou, B., On incidence energy of a graph, Linear Algebra Appl. 431 (2009), 1223-1233. (2009) Zbl1175.05084MR2547906
- Gutman, I., Mohar, B., 10.1021/ci960007t, J. Chem. Inf. Comput. Sci. 36 (1996), 982-985. (1996) DOI10.1021/ci960007t
- Hong, Y., Zhang, X.-D., 10.1016/j.disc.2005.04.001, Discrete Math. 296 (2005), 187-197. (2005) MR2154712DOI10.1016/j.disc.2005.04.001
- Jooyandeh, M. R., Kiani, D., Mirzakhah, M., Incidence energy of a graph, MATCH Commun. Math. Comput. Chem. 62 (2009), 561-572. (2009) MR2568740
- Klein, D. J., Randić, M., 10.1007/BF01164627, J. Math. Chem. 12 (1993), 81-95. (1993) MR1219566DOI10.1007/BF01164627
- Lazi'c, M., 10.1007/s10587-006-0089-2, Czechoslovak Math. J. 56 (2006), 1207-1213. (2006) MR2280804DOI10.1007/s10587-006-0089-2
- Nikiforov, V., 10.1016/j.jmaa.2006.03.072, J. Math. Anal. Appl. 326 (2007), 1472-1475. (2007) Zbl1113.15016MR2280998DOI10.1016/j.jmaa.2006.03.072
- Palacios, J., 10.1023/B:MCAP.0000045086.76839.54, Methodol. Comput. Appl. Probab. 6 (2004), 381-387. (2004) MR2108558DOI10.1023/B:MCAP.0000045086.76839.54
- Tian, G., Huang, T., Zhou, B., A note on sum of powers of the Laplacian eigenvalues of bipartite graphs, Linear Algebra Appl. 430 (2009), 2503-2510. (2009) Zbl1165.05020MR2508309
- Todeschini, R., Consonni, V., Handbook of Molecular Descriptors, Wiley-VCH Weinheim (2000). (2000)
- Zhou, B., 10.1016/j.laa.2008.06.023, Linear Algebra Appl. 429 (2008), 2239-2246. (2008) Zbl1144.05325MR2446656DOI10.1016/j.laa.2008.06.023
- Zhou, B., On sum of powers of Laplacian eigenvalues and Laplacian Estrada index of graphs, MATCH Commun. Math. Comput. Chem. 62 (2009), 611-619. (2009) MR2568745
- Zhou, B., More upper bounds for the incidence energy, MATCH Commun. Math. Comput. Chem. 64 (2010), 123-128. (2010) MR2677573
- Zhou, B., Signless Laplacian spectral radius and Hamiltonicity, Linear Algebra Appl. 432 (2010), 566-570. (2010) Zbl1188.05086MR2577702
- Zhou, B., Gutman, I., 10.2298/AADM0902371Z, Appl. Anal. Discrete Math. 3 (2009), 371-378. (2009) MR2546897DOI10.2298/AADM0902371Z
- Zhou, B., Trinajstić, N., 10.1016/j.cplett.2008.02.060, Chem. Phys. Lett. 445 (2008), 120-123. (2008) DOI10.1016/j.cplett.2008.02.060
- Zhou, B., Trinajstić, N., 10.1007/s10910-008-9459-3, J. Math. Chem. 46 (2009), 283-289. (2009) MR2598494DOI10.1007/s10910-008-9459-3
- Zhou, B., Trinajstić, N., Mathematical properties of molecular descriptors based on distances, Croat. Chem. Acta 83 (2010), 227-242. (2010)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.