# Numerical simulation of suspension induced rheology

Rodolphe Prignitz; Eberhard Bänsch

Kybernetika (2010)

- Volume: 46, Issue: 2, page 281-293
- ISSN: 0023-5954

## Access Full Article

top## Abstract

top## How to cite

topPrignitz, Rodolphe, and Bänsch, Eberhard. "Numerical simulation of suspension induced rheology." Kybernetika 46.2 (2010): 281-293. <http://eudml.org/doc/196423>.

@article{Prignitz2010,

abstract = {Flow of particles suspended in a fluid can be found in numerous industrial processes utilizing sedimentation, fluidization and lubricated transport such as food processing, catalytic processing, slurries, coating, paper manufacturing, particle injection molding and filter operation. The ability to understand rheology effects of particulate flows is elementary for the design, operation and efficiency of the underlying processes. Despite the fact that particle technology is widely used, it is still an enormous experimental challenge to determine the correct parameters for the process employed. In this paper we present 2-dimensional numerical results for the behavior of a particle based suspension and compare it with analytically results obtained for the Stokes-flow around a single particle.},

author = {Prignitz, Rodolphe, Bänsch, Eberhard},

journal = {Kybernetika},

keywords = {CFD; multiphase flows; particulate flow; finite elements; subspace projection; rheology; CFD; multiphase flows; particulate flow; finite elements; subspace projection; rheology},

language = {eng},

number = {2},

pages = {281-293},

publisher = {Institute of Information Theory and Automation AS CR},

title = {Numerical simulation of suspension induced rheology},

url = {http://eudml.org/doc/196423},

volume = {46},

year = {2010},

}

TY - JOUR

AU - Prignitz, Rodolphe

AU - Bänsch, Eberhard

TI - Numerical simulation of suspension induced rheology

JO - Kybernetika

PY - 2010

PB - Institute of Information Theory and Automation AS CR

VL - 46

IS - 2

SP - 281

EP - 293

AB - Flow of particles suspended in a fluid can be found in numerous industrial processes utilizing sedimentation, fluidization and lubricated transport such as food processing, catalytic processing, slurries, coating, paper manufacturing, particle injection molding and filter operation. The ability to understand rheology effects of particulate flows is elementary for the design, operation and efficiency of the underlying processes. Despite the fact that particle technology is widely used, it is still an enormous experimental challenge to determine the correct parameters for the process employed. In this paper we present 2-dimensional numerical results for the behavior of a particle based suspension and compare it with analytically results obtained for the Stokes-flow around a single particle.

LA - eng

KW - CFD; multiphase flows; particulate flow; finite elements; subspace projection; rheology; CFD; multiphase flows; particulate flow; finite elements; subspace projection; rheology

UR - http://eudml.org/doc/196423

ER -

## References

top- Bänsch, E., 10.1016/0899-8248(91)90006-G, IMPACT Comput. Sci. Engrg. 3 (1991), 181–191. doi10.1016/0899-8248(91)90006-G. MR1141298DOI10.1016/0899-8248(91)90006-G
- Bänsch, E., Simulation of instationary, incompressible flows, Acta Math. Univ. Comenian. 67 (1997), 1, 101–114. MR1660818
- Bönisch, S., Heuveline, V., 10.1016/j.compfluid.2007.01.010, 1. The Newtonian case. Comput. Fluids 36 (2007), 1434–1445. DOI10.1016/j.compfluid.2007.01.010
- Chwang, A. T., Wu, T. Yao-Tsu, 10.1017/S0022112075000614, Part 2. Singularity method for stokes flows. J. Fluid Mech. 67 (1975), 787–815. MR0368585DOI10.1017/S0022112075000614
- Einstein, A., Untersuchungen über die Theorie der Brownschen Bewegung, Verlag Harri Deutsch, 1905. Zbl0936.01034
- Feng, J., Hu, H. H., Joseph, D. D., 10.1017/S0022112094000285, Part 1. Sedimentation. J. Fluid Mech. 261 (1994), 95–134. Zbl0876.76040DOI10.1017/S0022112094000285
- Glowinski, R., Pan, T.-W., Hesla, T. I., Joseph, D. D., 10.1016/S0301-9322(98)00048-2, Internat. J. Multiphase Flow 25 (1999), 755–794. doi10.1016/S0301-9322(98)00048-2. Zbl1137.76592DOI10.1016/S0301-9322(98)00048-2
- Guermond, J. L., Shen, J., 10.1090/S0025-5718-03-01621-1, Math. Comp. 73 (2004), 1719–1737. Zbl1093.76050MR2059733DOI10.1090/S0025-5718-03-01621-1
- Hu, H. H., 10.1016/0301-9322(95)00068-2, Internat. J. Multiphase Flow 22 (1996), 2, 335–352. Zbl1135.76442DOI10.1016/0301-9322(95)00068-2
- Jeffrey, D. J., Acrivos, A., 10.1002/aic.690220303, AIChe J. 22 (1976), 417–432. DOI10.1002/aic.690220303
- Martys, N. S., Mountain, R. D., 10.1103/PhysRevE.59.3733, Phys. Rev. E 59 (1999), 3, 3733–3736. DOI10.1103/PhysRevE.59.3733
- Titcombe, M. S., Ward, M. J., Kropinski, M. C., A hybrid method for low reynolds number flow past an asymmetric cylindrical body, SIAM J. Appl. Math. 55 (1994), 1484–1510. Zbl1136.76345
- Tritton, D. J., 10.1017/S0022112059000829, J. Fluid Mech. 6 (1959), 547–567. DOI10.1017/S0022112059000829
- Wan, D., Turek, S., 10.1016/j.jcp.2006.06.002, J. Comput. Phys. 222 (2007), 28–56. MR2298035DOI10.1016/j.jcp.2006.06.002

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.