### Optimal error estimates for the Stokes and Navier-Stokes equations with slip-boundary condition

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Back to Simple Search
# Advanced Search

Flow of particles suspended in a fluid can be found in numerous industrial processes utilizing sedimentation, fluidization and lubricated transport such as food processing, catalytic processing, slurries, coating, paper manufacturing, particle injection molding and filter operation. The ability to understand rheology effects of particulate flows is elementary for the design, operation and efficiency of the underlying processes. Despite the fact that particle technology is widely used, it is still...

We consider a finite element discretization by the Taylor–Hood element for the stationary Stokes and Navier–Stokes equations with slip boundary condition. The slip boundary condition is enforced pointwise for nodal values of the velocity in boundary nodes. We prove optimal error estimates in the and norms for the velocity and pressure respectively.

**Page 1**