Long-time behavior of small solutions to quasilinear dissipative hyperbolic equations
Albert J. Milani; Hans Volkmer
Applications of Mathematics (2011)
- Volume: 56, Issue: 5, page 425-457
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topMilani, Albert J., and Volkmer, Hans. "Long-time behavior of small solutions to quasilinear dissipative hyperbolic equations." Applications of Mathematics 56.5 (2011): 425-457. <http://eudml.org/doc/196470>.
@article{Milani2011,
abstract = {We give sufficient conditions for the existence of global small solutions to the quasilinear dissipative hyperbolic equation \[ u\_\{tt\} + 2 u\_t - a\_\{ij\}(u\_t,\nabla u)\partial \_i\partial \_j u = f \]
corresponding to initial values and source terms of sufficiently small size, as well as of small solutions to the corresponding stationary version, i.e. the quasilinear elliptic equation \[ -a\_\{ij\}(0,\nabla v)\partial \_i\partial \_j v=h. \]
We then give conditions for the convergence, as $t\rightarrow \infty $, of the solution of the evolution equation to its stationary state.},
author = {Milani, Albert J., Volkmer, Hans},
journal = {Applications of Mathematics},
keywords = {quasilinear evolution equation; quasilinear elliptic equation; a priori estimates; global existence; asymptotic behavior; stationary solutions; quasilinear evolution equation; quasilinear elliptic equation; global existence; asymptotic behavior; stationary solution},
language = {eng},
number = {5},
pages = {425-457},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Long-time behavior of small solutions to quasilinear dissipative hyperbolic equations},
url = {http://eudml.org/doc/196470},
volume = {56},
year = {2011},
}
TY - JOUR
AU - Milani, Albert J.
AU - Volkmer, Hans
TI - Long-time behavior of small solutions to quasilinear dissipative hyperbolic equations
JO - Applications of Mathematics
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 5
SP - 425
EP - 457
AB - We give sufficient conditions for the existence of global small solutions to the quasilinear dissipative hyperbolic equation \[ u_{tt} + 2 u_t - a_{ij}(u_t,\nabla u)\partial _i\partial _j u = f \]
corresponding to initial values and source terms of sufficiently small size, as well as of small solutions to the corresponding stationary version, i.e. the quasilinear elliptic equation \[ -a_{ij}(0,\nabla v)\partial _i\partial _j v=h. \]
We then give conditions for the convergence, as $t\rightarrow \infty $, of the solution of the evolution equation to its stationary state.
LA - eng
KW - quasilinear evolution equation; quasilinear elliptic equation; a priori estimates; global existence; asymptotic behavior; stationary solutions; quasilinear evolution equation; quasilinear elliptic equation; global existence; asymptotic behavior; stationary solution
UR - http://eudml.org/doc/196470
ER -
References
top- Adams, R., Fournier, J., Sobolev Spaces, 2nd ed, Academic Press New York (2003). (2003) Zbl1098.46001MR2424078
- Cattaneo, C., Sulla Conduzione del Calore, Atti Semin. Mat. Fis., Univ. Modena 3 (1949), 83-101 Italian. (1949) Zbl0035.26203MR0032898
- Hadeler, K P., Random walk systems and reaction telegraph equations, In: Dynamical Systems and their Applications S. van Strien, S. V. Lunel Royal Academy of the Netherlands (1995). (1995)
- Haus, H. A., Waves and Fields in Optoelectronics, Prentice Hall (1984). (1984)
- Kato, T., Abstract Differential Equations and Nonlinear Mixed Problems. Fermian Lectures, Academie Nazionale dei Licei Pisa (1985). (1985) MR0930267
- Klainerman, S., 10.1002/cpa.3160330104, Commun. Pure Appl. Math. 33 (1980), 43-101. (1980) Zbl0405.35056MR0544044DOI10.1002/cpa.3160330104
- Li, Ta-Tsien, Nonlinear Heat Conduction with Finite Speed of Popagation. Proceedings of the China-Japan Symposium on Reaction Diffusion Equations and their Applcations to Computational Aspects, World Scientific Singapore (1997). (1997) MR1654353
- Matsumura, A., 10.2977/prims/1195190962, Publ. Res. Inst. Mat. Sci., Kyoto Univ. 12 (1976), 169-189. (1976) MR0420031DOI10.2977/prims/1195190962
- Matsumura, A., 10.2977/prims/1195189813, Publ. Res. Inst. Mat. Sci., Kyoto Univ. 13 (1977), 349-379. (1977) MR0470507DOI10.2977/prims/1195189813
- Milani, A., 10.1016/0022-247X(84)90218-X, J. Math. Anal. Appl. 102 (1984), 251-274. (1984) Zbl0551.35006MR0751358DOI10.1016/0022-247X(84)90218-X
- Milani, A., Global existence via singular perturbations for quasilinear evolution equations, Adv. Math. Sci. Appl. 6 (1996), 419-444. (1996) Zbl0868.35008MR1411976
- Mizohata, S., The Theory of Partial Differential Equations, Cambridge University Press London (1973). (1973) Zbl0263.35001MR0599580
- Moser, J., A rapidly convergent iteration method and non-linear differential equations, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 20 (1966), 265-315. (1966) Zbl0174.47801MR0199523
- Ponce, G., 10.1016/0362-546X(85)90001-X, Nonlin. Anal., Theory Methods Appl. 9 (1985), 399-418. (1985) Zbl0576.35023MR0785713DOI10.1016/0362-546X(85)90001-X
- Racke, R., 10.1002/mma.1670130604, Math. Methods Appl. Sci. 13 (1990), 481-491. (1990) Zbl0728.35071DOI10.1002/mma.1670130604
- Racke, R., Lectures on Nonlinear Evolution Equations. Initial Value Problems, Vieweg Braunschweig (1992). (1992) Zbl0811.35002MR1158463
- Schochet, S., 10.3233/ASY-1988-1401, Asymptotic Anal. 1 (1988), 263-282. (1988) Zbl0685.35099MR0972301DOI10.3233/ASY-1988-1401
- Yang, H., Milani, A., 10.1016/S0007-4497(00)00141-X, Bull. Sci. Math. 124 (2000), 415-433. (2000) Zbl0959.35126MR1781556DOI10.1016/S0007-4497(00)00141-X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.