A strong invariance principle for negatively associated random fields
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 1, page 27-40
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCai, Guang-hui. "A strong invariance principle for negatively associated random fields." Czechoslovak Mathematical Journal 61.1 (2011): 27-40. <http://eudml.org/doc/196488>.
@article{Cai2011,
abstract = {In this paper we obtain a strong invariance principle for negatively associated random fields, under the assumptions that the field has a finite $(2+\delta )$th moment and the covariance coefficient $u(n)$ exponentially decreases to $0$. The main tools are the Berkes-Morrow multi-parameter blocking technique and the Csörgő-Révész quantile transform method.},
author = {Cai, Guang-hui},
journal = {Czechoslovak Mathematical Journal},
keywords = {strong invariance principle; negative association; random field; blocking technique; quantile transform; strong invariance principle; negative association; random field; blocking technique; quantile transform},
language = {eng},
number = {1},
pages = {27-40},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A strong invariance principle for negatively associated random fields},
url = {http://eudml.org/doc/196488},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Cai, Guang-hui
TI - A strong invariance principle for negatively associated random fields
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 1
SP - 27
EP - 40
AB - In this paper we obtain a strong invariance principle for negatively associated random fields, under the assumptions that the field has a finite $(2+\delta )$th moment and the covariance coefficient $u(n)$ exponentially decreases to $0$. The main tools are the Berkes-Morrow multi-parameter blocking technique and the Csörgő-Révész quantile transform method.
LA - eng
KW - strong invariance principle; negative association; random field; blocking technique; quantile transform; strong invariance principle; negative association; random field; blocking technique; quantile transform
UR - http://eudml.org/doc/196488
ER -
References
top- Alam, K., Saxena, K. M. L., Positive dependence in multivariate distributions, Comm. Statist. A 10 1183-1196. (1981) Zbl0471.62045MR0623526
- Balan, R. M., 10.1214/009117904000001071, Ann. Probab. 33 823-840. (2005) Zbl1070.60032MR2123212DOI10.1214/009117904000001071
- Berkes, I., Philipp, W., Approximation theorems for independent and weakly dependent random vectors, Ann. Probab. 7 19-54. (1979) Zbl0392.60024MR0515811
- Berkes, I., Morrow, G. J., 10.1007/BF00533712, Z. Wahrsch. view. Gebiete 57 15-37. (1981) Zbl0443.60029MR0623453DOI10.1007/BF00533712
- Bulinski, Shashkin, The strong invariance principles for dependent multi-indexed random variables, Dokl. Acad. Nauk 403 155-158. (2005) MR2161593
- Bulinski, Shashkin, Strong invariance principles for dependent random fields, ISM Lect. Notes-Monograph Series Dynamics and Stochastics 48 128-143. (2006) MR2306195
- Cai, G. H., Wang, J. F., 10.1016/j.spl.2008.07.039, Statistics and Probability Letters 79 215-222. (2009) Zbl1157.60013MR2483543DOI10.1016/j.spl.2008.07.039
- Csörgő, M., Révész, P., 10.1007/BF00532865, Z. Wahrsch. view. Gebiete 31 255-260. (1975) MR0375411DOI10.1007/BF00532865
- Csörgő, M., Révész, P., Strong Approximations in Probability and Statistics, Academic Press, New York. (1981) MR0666546
- Feller, W., An Introduction to Probability Theory and its Applications 2, 2nd ed John Wiley. New York. (1971) MR0088081
- Joag-Dev, K., Proschan, F., 10.1214/aos/1176346079, Ann. Statist. 11 286-295. (1983) MR0684886DOI10.1214/aos/1176346079
- Newman, C. M., Asympotic independence and limit theorems for positively and negatively dependent random variables, Inequalities in Statistics and Probability (Tong, Y. L., ed., Institute of Mathematical Statistics, Hayward, CA) 127-140. (1984) MR0789244
- Roussas, G. G., 10.1006/jmva.1994.1039, J. Multivariate Anal. 50 152-173. (1994) Zbl0806.60040MR1292613DOI10.1006/jmva.1994.1039
- Shao, Q. M., Su, C., 10.1016/S0304-4149(99)00026-5, Stochastic Process. Appl. 83 139-148. (1999) MR1705604DOI10.1016/S0304-4149(99)00026-5
- Su, C., Zhao, L., Wang, Y., 10.1007/BF02874436, Sci. China Ser. A 40 172-182. (1997) Zbl0907.60023MR1451096DOI10.1007/BF02874436
- Wichura, M. J., 10.1214/aop/1176996980, Ann. Probab. 1 272-296. (1973) Zbl0288.60030MR0394894DOI10.1214/aop/1176996980
- Yu, H., A strong invariance principle for associated sequences, Ann. Probab. 24 2079-2097. (1996) Zbl0879.60028MR1415242
- Zhang, L. X., 10.1023/A:1006720512467, Acta Math. Hungar. 86 237-259. (2000) Zbl0964.60035MR1756175DOI10.1023/A:1006720512467
- Zhang, L. X., 10.1006/jmva.2000.1949, J. Multivariate Anal. 78 272-298. (2001) Zbl0989.60033MR1859759DOI10.1006/jmva.2000.1949
- Zhang, L. X., Wen, J. W., 10.1016/S0167-7152(01)00021-9, Statist. Probab. Lett. 53 259-267. (2001) Zbl0994.60026MR1841627DOI10.1016/S0167-7152(01)00021-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.