General theory of Lie derivatives for Lorentz tensors
Lorenzo Fatibene; Mauro Francaviglia
Communications in Mathematics (2011)
- Volume: 19, Issue: 1, page 11-25
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topFatibene, Lorenzo, and Francaviglia, Mauro. "General theory of Lie derivatives for Lorentz tensors." Communications in Mathematics 19.1 (2011): 11-25. <http://eudml.org/doc/196496>.
@article{Fatibene2011,
abstract = {We show how the ad hoc prescriptions appearing in 2001 for the Lie derivative of Lorentz tensors are a direct consequence of the Kosmann lift defined earlier, in a much more general setting encompassing older results of Y. Kosmann about Lie derivatives of spinors.},
author = {Fatibene, Lorenzo, Francaviglia, Mauro},
journal = {Communications in Mathematics},
keywords = {Lie derivative of spinors; Kosmann lift; Lorentz objects; Lie derivatives; Kosmann lift; Lorentz tensors; Lorentz vectors},
language = {eng},
number = {1},
pages = {11-25},
publisher = {University of Ostrava},
title = {General theory of Lie derivatives for Lorentz tensors},
url = {http://eudml.org/doc/196496},
volume = {19},
year = {2011},
}
TY - JOUR
AU - Fatibene, Lorenzo
AU - Francaviglia, Mauro
TI - General theory of Lie derivatives for Lorentz tensors
JO - Communications in Mathematics
PY - 2011
PB - University of Ostrava
VL - 19
IS - 1
SP - 11
EP - 25
AB - We show how the ad hoc prescriptions appearing in 2001 for the Lie derivative of Lorentz tensors are a direct consequence of the Kosmann lift defined earlier, in a much more general setting encompassing older results of Y. Kosmann about Lie derivatives of spinors.
LA - eng
KW - Lie derivative of spinors; Kosmann lift; Lorentz objects; Lie derivatives; Kosmann lift; Lorentz tensors; Lorentz vectors
UR - http://eudml.org/doc/196496
ER -
References
top- Barbero, F., Real Ashtekar variables for Lorentzian signature space-time, Phys. Rev. D51 1996 5507–5510 (1996) MR1338108
- Bourguignon, J.-P., Gauduchon, P., 10.1007/BF02099184, Commun. Math. Phys. 144 1992 581–599 (1992) Zbl0755.53009MR1158762DOI10.1007/BF02099184
- Fatibene, L., Ferraris, M., Francaviglia, M., 10.1023/A:1018852524599, Gen. Rel. Grav. 30 (9) 1998 1371–1389 (1998) Zbl0935.83019MR1640625DOI10.1023/A:1018852524599
- Fatibene, L., Ferraris, M., Francaviglia, M., Godina, M., A geometric definition of Lie derivative for Spinor Fields, , I. Kolář (ed.)Proceedings of 6th International Conference on Differential Geometry and its Applications, August 28–September 1, 1995 MU University, Brno, Czech Republic 1996 549–557 (1996) Zbl0858.53035MR1406374
- Fatibene, L., Ferraris, M., Francaviglia, M., McLenaghan, R.G., 10.1063/1.1469668, J. Math. Phys. 43 2002 3147–3161 (2002) Zbl1059.70021MR1902473DOI10.1063/1.1469668
- Fatibene, L., Francaviglia, M., Natural and Gauge Natural Formalism for Classical Field Theories, Kluwer Academic Publishers, Dordrecht 2003 xxii (2003) Zbl1138.81303MR2039451
- Fatibene, L., Francaviglia, M., Deformations of spin structures and gravity, Acta Physica Polonica B 29 (4) 1998 915–928 (1998) Zbl0988.83043MR1682316
- Fatibene, L., Francaviglia, M., Rovelli, C., 10.1088/0264-9381/24/11/017, Classical and Quantum Gravity 24 2007 3055–3066 (2007) Zbl1117.83009MR2330908DOI10.1088/0264-9381/24/11/017
- Fatibene, L., Francaviglia, M., Rovelli, C., 10.1088/0264-9381/24/16/014, Classical and Quantum Gravity 24 2007 4207–4217 (2007) MR2348375DOI10.1088/0264-9381/24/16/014
- Fatibene, L., McLenaghan, R.G., Smith, S., Separation of variables for the Dirac equation on low dimensional spaces, , Advances in general relativity and cosmology Pitagora, Bologna 2003 109–127 (2003)
- Figueroa-O’Farrill, J.M., 10.1088/0264-9381/16/6/330, Classical and Quantum Gravity 16 1999 2043–2055 hep-th/9902066 (1999) MR1697126DOI10.1088/0264-9381/16/6/330
- Godina, M., Matteucci, P., 10.1142/S0219887805000624, Int. J. Geom. Methods Mod. Phys. 2 2005 159–188 math/0504366 (2005) MR2140175DOI10.1142/S0219887805000624
- Holst, S., Barbero’s Hamiltonian Derived from a Generalized Hilbert-Palatini Action, Phys. Rev. D53 1996 5966–5969 (1996) MR1388932
- Hurley, D.J., Vandyck, M.A., 10.1088/0305-4470/27/13/030, J. Phys. A 27 1994 4569–4580 (1994) MR1294959DOI10.1088/0305-4470/27/13/030
- Kolář, I., Michor, P.W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, N.Y. 1993 (1993) MR1202431
- Kosmann, Y., 10.1007/BF02428822, Ann. di Matematica Pura e Appl. 91 1972 317–395 (1972) Zbl0231.53065MR0312413DOI10.1007/BF02428822
- Kosmann, Y., Dérivées de Lie des spineurs, Comptes Rendus Acad. Sc. Paris, série A 262 1966 289–292 (1966) Zbl0136.18403MR0200837
- Kosmann, Y., Dérivées de Lie des spineurs. Applications, Comptes Rendus Acad. Sc. Paris, série A 262 1966 394–397 (1966) Zbl0136.18403MR0200838
- Kosmann, Y., Propriétés des dérivations de l’algèbre des tenseurs-spineurs, Comptes Rendus Acad. Sc. Paris, série A 264 1967 355–358 (1967) MR0212712
- Immirzi, G., 10.1016/S0920-5632(97)00354-X, Nucl. Phys. Proc. Suppl. 57 1997 65–72 (1997) Zbl0976.83504MR1480184DOI10.1016/S0920-5632(97)00354-X
- Obukhov, Y.N., Rubilar, G.F., 10.1103/PhysRevD.74.064002, Phys. Rev. D 74 2006 064002 gr-qc/0608064 (2006) DOI10.1103/PhysRevD.74.064002
- Ortin, T., A Note on Lie-Lorentz Derivatives, Classical and Quantum Gravity 19 2002 L143–L150 hep-th/0206159 (2002) Zbl1004.83037MR1921400
- Sharipov, R., A note on Kosmann-Lie derivatives of Weyl spinors, arXiv: 0801.0622
- Trautman, A., Invariance of Lagrangian Systems, , Papers in honour of J. L. Synge Clarenden Press, Oxford 1972 85–100 (1972) Zbl0273.58004MR0503424
- Vandyck, M.A., 10.1007/BF00759185, Gen. Rel. Grav. 20 1988 261–277 (1988) Zbl0647.53074DOI10.1007/BF00759185
- Vandyck, M.A., 10.1007/BF00760090, Gen. Rel. Grav. 20 1988 905–925 (1988) DOI10.1007/BF00760090
- Yano, K., The theory of Lie derivatives and its applications, North-Holland, Amsterdam 1955 (1955)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.