Bubble tree compactification of moduli spaces of vector bundles on surfaces
We announce some results on compactifying moduli spaces of rank 2 vector bundles on surfaces by spaces of vector bundles on trees of surfaces. This is thought as an algebraic counterpart of the so-called bubbling of vector bundles and connections in differential geometry. The new moduli spaces are algebraic spaces arising as quotients by group actions according to a result of Kollár. As an example, the compactification of the space of stable rank 2 vector bundles with Chern classes c 1 = 0, c 1...