Quantum logics and bivariable functions

Eva Drobná; Oľga Nánásiová; Ľubica Valášková

Kybernetika (2010)

  • Volume: 46, Issue: 6, page 982-995
  • ISSN: 0023-5954

Abstract

top
New approach to characterization of orthomodular lattices by means of special types of bivariable functions G is suggested. Under special marginal conditions a bivariable function G can operate as, for example, infimum measure, supremum measure or symmetric difference measure for two elements of an orthomodular lattice.

How to cite

top

Drobná, Eva, Nánásiová, Oľga, and Valášková, Ľubica. "Quantum logics and bivariable functions." Kybernetika 46.6 (2010): 982-995. <http://eudml.org/doc/196520>.

@article{Drobná2010,
abstract = {New approach to characterization of orthomodular lattices by means of special types of bivariable functions $G$ is suggested. Under special marginal conditions a bivariable function $G$ can operate as, for example, infimum measure, supremum measure or symmetric difference measure for two elements of an orthomodular lattice.},
author = {Drobná, Eva, Nánásiová, Oľga, Valášková, Ľubica},
journal = {Kybernetika},
keywords = {finite atomistic quantum logic; orthomodular lattice; conditional state; s-map; d-map; bivariable functions; modeling infimum measure; supremum measure; simultaneous measurements; quantum logic; orthomodular lattice; s-map; d-map},
language = {eng},
number = {6},
pages = {982-995},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Quantum logics and bivariable functions},
url = {http://eudml.org/doc/196520},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Drobná, Eva
AU - Nánásiová, Oľga
AU - Valášková, Ľubica
TI - Quantum logics and bivariable functions
JO - Kybernetika
PY - 2010
PB - Institute of Information Theory and Automation AS CR
VL - 46
IS - 6
SP - 982
EP - 995
AB - New approach to characterization of orthomodular lattices by means of special types of bivariable functions $G$ is suggested. Under special marginal conditions a bivariable function $G$ can operate as, for example, infimum measure, supremum measure or symmetric difference measure for two elements of an orthomodular lattice.
LA - eng
KW - finite atomistic quantum logic; orthomodular lattice; conditional state; s-map; d-map; bivariable functions; modeling infimum measure; supremum measure; simultaneous measurements; quantum logic; orthomodular lattice; s-map; d-map
UR - http://eudml.org/doc/196520
ER -

References

top
  1. Al-Adilee, A. M., Nánásiová, O., 10.1016/j.ins.2009.08.011, Inform. Sci. 179 (2009), 4199–4207. (2009) Zbl1180.81005MR2722377DOI10.1016/j.ins.2009.08.011
  2. Dohnal, G., 10.1016/j.ins.2008.10.008, A reflection. Inform. Sci. 179 (2009), 485–491. (2009) Zbl1161.81309MR2490187DOI10.1016/j.ins.2008.10.008
  3. Dvurečenskij, A., Pulmannová, S., New Trends in Quantum Structure, Kluwer Acad. Publishers, Dortrecht/Boston/London, Ister Science, Bratislava 2000. (2000) MR1861369
  4. Greechie, R. J., 10.1016/0097-3165(71)90015-X, J. Combin. Theory, Ser. A10 (1971), 119–132. (1971) MR0274355DOI10.1016/0097-3165(71)90015-X
  5. Kalmbach, G., Orthomodular Lattices, Academic Press, London 1983. (1983) Zbl0528.06012MR0716496
  6. Nánásiová, O., 10.1023/A:1027384132753, Internat. J. Theoret. Phys. 42 (2003), 1889–1903. (2003) Zbl1053.81006MR2023910DOI10.1023/A:1027384132753
  7. Nánásiová, O., 10.1023/B:IJTP.0000048818.23615.28, Internat. J. Theoret. Phys. 43 (2004), 1757–1767. (2004) Zbl1074.81006MR2108309DOI10.1023/B:IJTP.0000048818.23615.28
  8. Nánásiová, O., Khrennikov, A., 10.1007/s10773-006-9030-6, Internat. J. Theoret. Phys. 45 (2006), 469–482. (2006) MR2241859DOI10.1007/s10773-006-9030-6
  9. Nánásiová, O., Khrennikov, A., 10.1007/s10773-006-9034-2, Internat. J. Theoret. Phys. 46 (2007) 1083–1095. (2007) Zbl1133.81002MR2330390DOI10.1007/s10773-006-9034-2
  10. Nánásiová, O., Pulmannová, S., 10.1016/j.ins.2008.07.032, Inform. Sci. 179 (2009) 515–520. (2009) Zbl1161.81311MR2490191DOI10.1016/j.ins.2008.07.032
  11. Nánásiová, O., Trokanová, K., Žembery, I., Commutative and non commutative s-maps, Forum Statist. Slovacum 2 (2007) 172–177. (2007) 
  12. Nánásiová, O., Valášková, L’., Maps on a quantum logic, Soft Computing (2009). doi:10.1007/s00500-009-0483-4 (2009) 
  13. Nánásiová, O., Valášková, L’., Marginality and triangle inequality Internat, J. Theoret. Phys. (2010), accepted. (2010) MR2738079
  14. Navara, M., 10.1090/S0002-9939-1994-1191871-X, Proc. Amer. Math. Soc. 122 (1994), 7–12. (1994) MR1191871DOI10.1090/S0002-9939-1994-1191871-X
  15. Neumann, J. von, Mathematische Grundlagen der Quantenmechanik, Springer-Verlag, Berlin 1932. (1932) MR0223138
  16. Pták, P., Pulmannová, S., Quantum Logics, Kluwer Acad. Press, Bratislava 1991. (1991) MR1176314
  17. Varadarajan, V., Geometry of Quantum Theory, D. Van Nostrand, Princeton, New Jersey 1968. (1968) Zbl0155.56802MR0471674

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.