Randomized goodness of fit tests

Friedrich Liese; Bing Liu

Kybernetika (2011)

  • Volume: 47, Issue: 6, page 814-839
  • ISSN: 0023-5954

Abstract

top
Classical goodness of fit tests are no longer asymptotically distributional free if parameters are estimated. For a parametric model and the maximum likelihood estimator the empirical processes with estimated parameters is asymptotically transformed into a time transformed Brownian bridge by adding an independent Gaussian process that is suitably constructed. This randomization makes the classical tests distributional free. The power under local alternatives is investigated. Computer simulations compare the randomized Cramér-von Mises test with tests specially designed for location-scale families, such as the Shapiro-Wilk and the Shenton-Bowman test for normality and with the Epps-Pulley test for exponentiality.

How to cite

top

Liese, Friedrich, and Liu, Bing. "Randomized goodness of fit tests." Kybernetika 47.6 (2011): 814-839. <http://eudml.org/doc/196524>.

@article{Liese2011,
abstract = {Classical goodness of fit tests are no longer asymptotically distributional free if parameters are estimated. For a parametric model and the maximum likelihood estimator the empirical processes with estimated parameters is asymptotically transformed into a time transformed Brownian bridge by adding an independent Gaussian process that is suitably constructed. This randomization makes the classical tests distributional free. The power under local alternatives is investigated. Computer simulations compare the randomized Cramér-von Mises test with tests specially designed for location-scale families, such as the Shapiro-Wilk and the Shenton-Bowman test for normality and with the Epps-Pulley test for exponentiality.},
author = {Liese, Friedrich, Liu, Bing},
journal = {Kybernetika},
keywords = {goodness of fit tests with estimated parameters; Kolmogorov–Smirnov test; Cramér–von Mises test; randomization; goodness-of-fit tests with estimated parameters; Kolmogorov-Smirnov test; Cramér-von Mises test; randomization},
language = {eng},
number = {6},
pages = {814-839},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Randomized goodness of fit tests},
url = {http://eudml.org/doc/196524},
volume = {47},
year = {2011},
}

TY - JOUR
AU - Liese, Friedrich
AU - Liu, Bing
TI - Randomized goodness of fit tests
JO - Kybernetika
PY - 2011
PB - Institute of Information Theory and Automation AS CR
VL - 47
IS - 6
SP - 814
EP - 839
AB - Classical goodness of fit tests are no longer asymptotically distributional free if parameters are estimated. For a parametric model and the maximum likelihood estimator the empirical processes with estimated parameters is asymptotically transformed into a time transformed Brownian bridge by adding an independent Gaussian process that is suitably constructed. This randomization makes the classical tests distributional free. The power under local alternatives is investigated. Computer simulations compare the randomized Cramér-von Mises test with tests specially designed for location-scale families, such as the Shapiro-Wilk and the Shenton-Bowman test for normality and with the Epps-Pulley test for exponentiality.
LA - eng
KW - goodness of fit tests with estimated parameters; Kolmogorov–Smirnov test; Cramér–von Mises test; randomization; goodness-of-fit tests with estimated parameters; Kolmogorov-Smirnov test; Cramér-von Mises test; randomization
UR - http://eudml.org/doc/196524
ER -

References

top
  1. Billingsley, P., Covergence of Probability Measures, Wiley, New York 1986. (1986) MR0233396
  2. Bowman, K. O., Shenton, L. R., Omnibus test contours for departures from normality based on b 1 and b 2 , Biometrica 62 (1975), 243-250. (1975) Zbl0308.62016MR0381079
  3. Csörgő, S., Faraway, J. J., The exact and asymptotic distributions of Cramér–von Mises statistics, J. Roy. Statist. Soc. Ser. B (Methodological) 58 (1996), 1, 221–234. (1996) MR1379239
  4. D’Agostino, R. B., Stephens, M. A., Goodness-of-fit Techniques, Marcel Decker, New York and Basel 1986. (1986) MR0874534
  5. Durbin, J., Distribution theory for tests based on the sample distribution function, Regional Conference Series in Applied Mathematics 9, SIAM, Philadelphia 1973. (1973) Zbl0267.62002MR0305507
  6. Durbin, J., 10.1214/aos/1176342365, Ann. Statist. 1 (1973), 279–290. (1973) Zbl0256.62021MR0359131DOI10.1214/aos/1176342365
  7. Genz, M., Haeusler, E., 10.1016/j.cam.2005.03.070, J. Comput. Appl. Math. 186 (2006), 191–216. (2006) Zbl1073.62044MR2190305DOI10.1016/j.cam.2005.03.070
  8. Haywood, J., Khmaladze, E., 10.1016/j.jeconom.2007.08.005, Econometrics 143 (2008), 5–18. (2008) MR2384430DOI10.1016/j.jeconom.2007.08.005
  9. Janssen, A., 10.1016/j.jspi.2003.09.006, J. Statist. Plann. Inference 126 (2004), 461–477. (2004) MR2088753DOI10.1016/j.jspi.2003.09.006
  10. Khmaladze, E., Martingale approach in the theory of goodness of fit tests, Theory Probab. Appl. 24 (1981), 2, 283–302. (1981) Zbl0454.60049
  11. Liese, F., Miescke, K. J., Statistical Decision Theory, Estimation, Testing and Selection, Springer-Verlag, New York 2008. (2008) Zbl1154.62008MR2421720
  12. Matsumoto, M., Nishimura, T., 10.1145/272991.272995, ACM Trans. Model. Comp. Simul. 8 (1998), 19, 3–30. (1998) DOI10.1145/272991.272995
  13. Pollard, D., Convergence of Stochastic Processes, Springer-Verlag, New York 1984. (1984) Zbl0544.60045MR0762984
  14. Shapiro, S. S., Francia, R. S., 10.1080/01621459.1972.10481232, J. Amer. Statist. Assoc. 67 (1972), 215–216. (1972) DOI10.1080/01621459.1972.10481232
  15. Shorack, G., Wellner, J. A., Empirical Processes with Applications to Statistics, Wiley, New York 1986. (1986) Zbl1170.62365MR0838963
  16. Stephens, M. A., 10.1080/01621459.1974.10480196, J. Amer. Statist. Assoc. 69 (1974), 730–737. (1974) DOI10.1080/01621459.1974.10480196
  17. Stephens, M. A., 10.1093/biomet/64.3.583, Biometrika 64 (1976), 583–588. (1976) MR0488478DOI10.1093/biomet/64.3.583
  18. Stute, W., Manteiga, W. G., Quindimil, M. P., 10.1007/BF02613687, Metrika 40 (1993), 243–256. (1993) Zbl0770.62016MR1235086DOI10.1007/BF02613687
  19. Vaart, A. W. van der, Wellner, J. A., Weak convergence and Empirical Processes, With Applications to Statstics. Second edition 2000. Springer, New York 1996. (2000) MR1385671
  20. Vaart, A. W. van der, Asymptotic Statistics, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Univ. Press. 1998. (1998) MR1652247

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.