Randomized goodness of fit tests
Kybernetika (2011)
- Volume: 47, Issue: 6, page 814-839
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topLiese, Friedrich, and Liu, Bing. "Randomized goodness of fit tests." Kybernetika 47.6 (2011): 814-839. <http://eudml.org/doc/196524>.
@article{Liese2011,
abstract = {Classical goodness of fit tests are no longer asymptotically distributional free if parameters are estimated. For a parametric model and the maximum likelihood estimator the empirical processes with estimated parameters is asymptotically transformed into a time transformed Brownian bridge by adding an independent Gaussian process that is suitably constructed. This randomization makes the classical tests distributional free. The power under local alternatives is investigated. Computer simulations compare the randomized Cramér-von Mises test with tests specially designed for location-scale families, such as the Shapiro-Wilk and the Shenton-Bowman test for normality and with the Epps-Pulley test for exponentiality.},
author = {Liese, Friedrich, Liu, Bing},
journal = {Kybernetika},
keywords = {goodness of fit tests with estimated parameters; Kolmogorov–Smirnov test; Cramér–von Mises test; randomization; goodness-of-fit tests with estimated parameters; Kolmogorov-Smirnov test; Cramér-von Mises test; randomization},
language = {eng},
number = {6},
pages = {814-839},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Randomized goodness of fit tests},
url = {http://eudml.org/doc/196524},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Liese, Friedrich
AU - Liu, Bing
TI - Randomized goodness of fit tests
JO - Kybernetika
PY - 2011
PB - Institute of Information Theory and Automation AS CR
VL - 47
IS - 6
SP - 814
EP - 839
AB - Classical goodness of fit tests are no longer asymptotically distributional free if parameters are estimated. For a parametric model and the maximum likelihood estimator the empirical processes with estimated parameters is asymptotically transformed into a time transformed Brownian bridge by adding an independent Gaussian process that is suitably constructed. This randomization makes the classical tests distributional free. The power under local alternatives is investigated. Computer simulations compare the randomized Cramér-von Mises test with tests specially designed for location-scale families, such as the Shapiro-Wilk and the Shenton-Bowman test for normality and with the Epps-Pulley test for exponentiality.
LA - eng
KW - goodness of fit tests with estimated parameters; Kolmogorov–Smirnov test; Cramér–von Mises test; randomization; goodness-of-fit tests with estimated parameters; Kolmogorov-Smirnov test; Cramér-von Mises test; randomization
UR - http://eudml.org/doc/196524
ER -
References
top- Billingsley, P., Covergence of Probability Measures, Wiley, New York 1986. (1986) MR0233396
- Bowman, K. O., Shenton, L. R., Omnibus test contours for departures from normality based on and , Biometrica 62 (1975), 243-250. (1975) Zbl0308.62016MR0381079
- Csörgő, S., Faraway, J. J., The exact and asymptotic distributions of Cramér–von Mises statistics, J. Roy. Statist. Soc. Ser. B (Methodological) 58 (1996), 1, 221–234. (1996) MR1379239
- D’Agostino, R. B., Stephens, M. A., Goodness-of-fit Techniques, Marcel Decker, New York and Basel 1986. (1986) MR0874534
- Durbin, J., Distribution theory for tests based on the sample distribution function, Regional Conference Series in Applied Mathematics 9, SIAM, Philadelphia 1973. (1973) Zbl0267.62002MR0305507
- Durbin, J., 10.1214/aos/1176342365, Ann. Statist. 1 (1973), 279–290. (1973) Zbl0256.62021MR0359131DOI10.1214/aos/1176342365
- Genz, M., Haeusler, E., 10.1016/j.cam.2005.03.070, J. Comput. Appl. Math. 186 (2006), 191–216. (2006) Zbl1073.62044MR2190305DOI10.1016/j.cam.2005.03.070
- Haywood, J., Khmaladze, E., 10.1016/j.jeconom.2007.08.005, Econometrics 143 (2008), 5–18. (2008) MR2384430DOI10.1016/j.jeconom.2007.08.005
- Janssen, A., 10.1016/j.jspi.2003.09.006, J. Statist. Plann. Inference 126 (2004), 461–477. (2004) MR2088753DOI10.1016/j.jspi.2003.09.006
- Khmaladze, E., Martingale approach in the theory of goodness of fit tests, Theory Probab. Appl. 24 (1981), 2, 283–302. (1981) Zbl0454.60049
- Liese, F., Miescke, K. J., Statistical Decision Theory, Estimation, Testing and Selection, Springer-Verlag, New York 2008. (2008) Zbl1154.62008MR2421720
- Matsumoto, M., Nishimura, T., 10.1145/272991.272995, ACM Trans. Model. Comp. Simul. 8 (1998), 19, 3–30. (1998) DOI10.1145/272991.272995
- Pollard, D., Convergence of Stochastic Processes, Springer-Verlag, New York 1984. (1984) Zbl0544.60045MR0762984
- Shapiro, S. S., Francia, R. S., 10.1080/01621459.1972.10481232, J. Amer. Statist. Assoc. 67 (1972), 215–216. (1972) DOI10.1080/01621459.1972.10481232
- Shorack, G., Wellner, J. A., Empirical Processes with Applications to Statistics, Wiley, New York 1986. (1986) Zbl1170.62365MR0838963
- Stephens, M. A., 10.1080/01621459.1974.10480196, J. Amer. Statist. Assoc. 69 (1974), 730–737. (1974) DOI10.1080/01621459.1974.10480196
- Stephens, M. A., 10.1093/biomet/64.3.583, Biometrika 64 (1976), 583–588. (1976) MR0488478DOI10.1093/biomet/64.3.583
- Stute, W., Manteiga, W. G., Quindimil, M. P., 10.1007/BF02613687, Metrika 40 (1993), 243–256. (1993) Zbl0770.62016MR1235086DOI10.1007/BF02613687
- Vaart, A. W. van der, Wellner, J. A., Weak convergence and Empirical Processes, With Applications to Statstics. Second edition 2000. Springer, New York 1996. (2000) MR1385671
- Vaart, A. W. van der, Asymptotic Statistics, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Univ. Press. 1998. (1998) MR1652247
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.