Differential evolution algorithm combined with chaotic pattern search

Yaoyao He; Jianzhong Zhou; Ning Lu; Hui Qin; Youlin Lu

Kybernetika (2010)

  • Volume: 46, Issue: 4, page 684-696
  • ISSN: 0023-5954

Abstract

top
Differential evolution algorithm combined with chaotic pattern search(DE-CPS) for global optimization is introduced to improve the performance of simple DE algorithm. Pattern search algorithm using chaotic variables instead of random variables is used to accelerate the convergence of solving the objective value. Experiments on 6 benchmark problems, including morbid Rosenbrock function, show that the novel hybrid algorithm is effective for nonlinear optimization problems in high dimensional space. The comparisons with the standard particle swarm optimization (PSO), differential evolution (DE) and other hybrid algorithms verify DE-CPS algorithm has great superiority.

How to cite

top

He, Yaoyao, et al. "Differential evolution algorithm combined with chaotic pattern search." Kybernetika 46.4 (2010): 684-696. <http://eudml.org/doc/196547>.

@article{He2010,
abstract = {Differential evolution algorithm combined with chaotic pattern search(DE-CPS) for global optimization is introduced to improve the performance of simple DE algorithm. Pattern search algorithm using chaotic variables instead of random variables is used to accelerate the convergence of solving the objective value. Experiments on 6 benchmark problems, including morbid Rosenbrock function, show that the novel hybrid algorithm is effective for nonlinear optimization problems in high dimensional space. The comparisons with the standard particle swarm optimization (PSO), differential evolution (DE) and other hybrid algorithms verify DE-CPS algorithm has great superiority.},
author = {He, Yaoyao, Zhou, Jianzhong, Lu, Ning, Qin, Hui, Lu, Youlin},
journal = {Kybernetika},
keywords = {hybrid algorithm; differential evolution(DE); chaotic pattern search; global optimization; hybrid algorithm; differential evolution; chaotic pattern search; global optimization; convergence acceleration; numerical examples; comparison of methods; nonlinear optimization; particle swarm optimization},
language = {eng},
number = {4},
pages = {684-696},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Differential evolution algorithm combined with chaotic pattern search},
url = {http://eudml.org/doc/196547},
volume = {46},
year = {2010},
}

TY - JOUR
AU - He, Yaoyao
AU - Zhou, Jianzhong
AU - Lu, Ning
AU - Qin, Hui
AU - Lu, Youlin
TI - Differential evolution algorithm combined with chaotic pattern search
JO - Kybernetika
PY - 2010
PB - Institute of Information Theory and Automation AS CR
VL - 46
IS - 4
SP - 684
EP - 696
AB - Differential evolution algorithm combined with chaotic pattern search(DE-CPS) for global optimization is introduced to improve the performance of simple DE algorithm. Pattern search algorithm using chaotic variables instead of random variables is used to accelerate the convergence of solving the objective value. Experiments on 6 benchmark problems, including morbid Rosenbrock function, show that the novel hybrid algorithm is effective for nonlinear optimization problems in high dimensional space. The comparisons with the standard particle swarm optimization (PSO), differential evolution (DE) and other hybrid algorithms verify DE-CPS algorithm has great superiority.
LA - eng
KW - hybrid algorithm; differential evolution(DE); chaotic pattern search; global optimization; hybrid algorithm; differential evolution; chaotic pattern search; global optimization; convergence acceleration; numerical examples; comparison of methods; nonlinear optimization; particle swarm optimization
UR - http://eudml.org/doc/196547
ER -

References

top
  1. Audet, C., Dennis, J. E., 10.1137/S1052623499352024, SIAM J. Optim. 11 (2001), 3, 573–594. (2001) MR1814033DOI10.1137/S1052623499352024
  2. Cai, J. J., Ma, X. Q., Li, X., 10.1016/j.epsr.2006.10.006, Electron. Power Systems Research 77 (2007), 10, 1373–1380. (2007) DOI10.1016/j.epsr.2006.10.006
  3. Fan, H. Y., Lampinen, J., 10.1023/A:1024653025686, J. Global Optim. 27 (2003), 1, 105–129. (2003) Zbl1142.90509MR1994565DOI10.1023/A:1024653025686
  4. HART, W. E., 10.1109/4235.942532, IEEE Trans. Evol. Comput. 5 (2001), 4, 388–397. (2001) DOI10.1109/4235.942532
  5. He, Y. Y., Zhou, J. Z., Li, C. S., A precise chaotic particle swarm optimization algorithm based on improved tent map, ICNC 7 (2008), 569–573. (2008) 
  6. He, Y. Y., Zhou, J. Z., Xiang, X. Q., 10.1016/j.chaos.2009.04.019, Chaos Solitons Fractals 42 (2009), 5, 3169–3176. (2009) Zbl1198.90184DOI10.1016/j.chaos.2009.04.019
  7. He, Y. Y., Zhou, J. Z., Qin, H., Flood disaster classification based on fuzzy clustering iterative model and modified differential evolution algorithm, FSKD 3 (2009), 85–89. (2009) 
  8. Ji, M. J., Tang, H. W., 10.1016/j.chaos.2003.12.032, optimization. Chaos Solitons Fractals 21 (2004), 933–941. (2004) Zbl1045.37054DOI10.1016/j.chaos.2003.12.032
  9. Kaelo, P., Ali, M. M., 10.1016/j.ejor.2004.08.047, European J. Oper. Res. 169 (2006), 1176–1184. (2006) Zbl1079.90106MR2174012DOI10.1016/j.ejor.2004.08.047
  10. Kennedy, J., Eberhan, R. J., Particle swarm optimization, In: IEEE Internat. Conf on Neural Networks 1995, Vol. 4, pp. 1942–1948. (1995) 
  11. Storn, R., Price, K., Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, Technical Report TR-95-012, International Computer Science Institute, Berkeley 1995. (1995) 
  12. Storn, R., Price, K., 10.1023/A:1008202821328, J. Global Optim. 11 (1997), 341–359. (1997) Zbl0888.90135MR1479553DOI10.1023/A:1008202821328
  13. Storn, R., Price, K., Differential evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces, University of California, Berkeley 2006. (2006) 
  14. Tavazoei, M. S., Haeri, M., 10.1016/j.amc.2006.09.087, Appl. Math. Comput. 187 (2007), 1076–1085. (2007) Zbl1114.65335MR2323114DOI10.1016/j.amc.2006.09.087
  15. Xiang, T., Liao, X. F., Wong, K. W., 10.1016/j.amc.2007.02.103, Appl. Math. Comput. 190 (2007), 1637–1645. (2007) Zbl1122.65363MR2339755DOI10.1016/j.amc.2007.02.103
  16. Yang, D. X., Li, G., Cheng, G. D., 10.1016/j.chaos.2006.04.057, Chaos Solitons Fractals 34 (2007), 1366–1375. (2007) DOI10.1016/j.chaos.2006.04.057
  17. Yuan, X. H., Yuan, Y. B., Zhang, Y. C., 10.1016/S0378-4754(01)00363-9, Math. Comput. Simul. 59 (2002), 4, 319–327. (2002) Zbl1030.90040MR1907567DOI10.1016/S0378-4754(01)00363-9
  18. Yuan, X. F., Wang, Y. N., Wu, L. H., Pattern search algorithm using chaos and its application, J. of Hunan University (Natural Sciences) 34 (2007), 9, 30-33. (2007) Zbl1150.68455
  19. Zhang, L., Zhang, C. J., Hopf bifurcation analysis of some hyperchaotic systems with time-delay controllers, Kybernetika 44 (2008), 1, 35–42. (2008) Zbl1145.93361MR2405053
  20. Zhu, Z. L., Li, S. P., Yu, H., A new approach to generalized chaos synchronization based on the stability of the error System, Kybernetika 44 (2008), 4, 492–500. (2008) Zbl1172.93015MR2459067

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.