Meta-optimization of bio-inspired algorithms for antenna array design

Virgilio Zúñiga-Grajeda; Alberto Coronado-Mendoza; Kelly Joel Gurubel-Tun

Kybernetika (2018)

  • Volume: 54, Issue: 3, page 610-628
  • ISSN: 0023-5954

Abstract

top
In this article, a technique called Meta-Optimization is used to enhance the effectiveness of bio-inspired algorithms that solve antenna array synthesis problems. This technique consists on a second optimization layer that finds the best behavioral parameters for a given algorithm, which allows to achieve better results. Bio-inspired computational methods are useful to solve complex multidimensional problems such as the design of antenna arrays. However, their performance depends heavily on the initial parameters. In this paper, the distances between antenna array elements are calculated in order to reduce electromagnetic interference from undesired sources. The results are compared to previous works, showing an improvement on the performance of bio-inspired optimization algorithms such as Particle Swarm Optimization and Differential Evolution. These results are found to be statistically significant based on the Wilcoxon's rank sum test as compared to these methods using the standard parameters proposed in the literature. Furthermore, graphical representations of the Meta-Optimization process called meta-landscapes are presented, showing the behavior of these algorithms for a range of different parameters, providing the best parameter combinations for each antenna problem.

How to cite

top

Zúñiga-Grajeda, Virgilio, Coronado-Mendoza, Alberto, and Gurubel-Tun, Kelly Joel. "Meta-optimization of bio-inspired algorithms for antenna array design." Kybernetika 54.3 (2018): 610-628. <http://eudml.org/doc/294758>.

@article{Zúñiga2018,
abstract = {In this article, a technique called Meta-Optimization is used to enhance the effectiveness of bio-inspired algorithms that solve antenna array synthesis problems. This technique consists on a second optimization layer that finds the best behavioral parameters for a given algorithm, which allows to achieve better results. Bio-inspired computational methods are useful to solve complex multidimensional problems such as the design of antenna arrays. However, their performance depends heavily on the initial parameters. In this paper, the distances between antenna array elements are calculated in order to reduce electromagnetic interference from undesired sources. The results are compared to previous works, showing an improvement on the performance of bio-inspired optimization algorithms such as Particle Swarm Optimization and Differential Evolution. These results are found to be statistically significant based on the Wilcoxon's rank sum test as compared to these methods using the standard parameters proposed in the literature. Furthermore, graphical representations of the Meta-Optimization process called meta-landscapes are presented, showing the behavior of these algorithms for a range of different parameters, providing the best parameter combinations for each antenna problem.},
author = {Zúñiga-Grajeda, Virgilio, Coronado-Mendoza, Alberto, Gurubel-Tun, Kelly Joel},
journal = {Kybernetika},
keywords = {bio-inspired algorithms; particle swarm optimization; differential evolution; meta-optimization; computer-aided design; antenna arrays},
language = {eng},
number = {3},
pages = {610-628},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Meta-optimization of bio-inspired algorithms for antenna array design},
url = {http://eudml.org/doc/294758},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Zúñiga-Grajeda, Virgilio
AU - Coronado-Mendoza, Alberto
AU - Gurubel-Tun, Kelly Joel
TI - Meta-optimization of bio-inspired algorithms for antenna array design
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 3
SP - 610
EP - 628
AB - In this article, a technique called Meta-Optimization is used to enhance the effectiveness of bio-inspired algorithms that solve antenna array synthesis problems. This technique consists on a second optimization layer that finds the best behavioral parameters for a given algorithm, which allows to achieve better results. Bio-inspired computational methods are useful to solve complex multidimensional problems such as the design of antenna arrays. However, their performance depends heavily on the initial parameters. In this paper, the distances between antenna array elements are calculated in order to reduce electromagnetic interference from undesired sources. The results are compared to previous works, showing an improvement on the performance of bio-inspired optimization algorithms such as Particle Swarm Optimization and Differential Evolution. These results are found to be statistically significant based on the Wilcoxon's rank sum test as compared to these methods using the standard parameters proposed in the literature. Furthermore, graphical representations of the Meta-Optimization process called meta-landscapes are presented, showing the behavior of these algorithms for a range of different parameters, providing the best parameter combinations for each antenna problem.
LA - eng
KW - bio-inspired algorithms; particle swarm optimization; differential evolution; meta-optimization; computer-aided design; antenna arrays
UR - http://eudml.org/doc/294758
ER -

References

top
  1. Anguera, J., Andújar, A., Huynh, M. C., Orlenius, C., Picher, C., Puente, C., 10.1155/2013/838364, Int. J. Antennas Propag. 2013 (2013), 1-25. DOI10.1155/2013/838364
  2. Balanis, C. A., Antenna Theory: Analysis and Design. Fourth edition., John Wiley and Sons, New Jersey 2016. 
  3. Bellman, R. E., Dynamic Programming., Princeton University Press 1957. Zbl1205.90002MR0090477
  4. Chowdhury, A., Giri, R., Ghosh, A., Das, S., Abraham, A., Snasel, V., 10.1109/cec.2010.5586518, In: IEEE Congress on Evolutionary Comutation 2010, pp. 1-8. DOI10.1109/cec.2010.5586518
  5. Clerc, M., Kennedy, J., 10.1109/4235.985692, IEEE Trans. Evol. Comput. 6 (2002), 58-73. DOI10.1109/4235.985692
  6. Davidon, W. C., 10.1137/0801001, J. Optim. 1, (1991), 1-17. MR1094786DOI10.1137/0801001
  7. León-Zapata, R. Díaz de, González, G., Flores-García, E., Rodríguez, A. G., González, F. J., 10.1155/2016/3156702, Int. J. Antennas Propag. 2016 (2016), 1-7. DOI10.1155/2016/3156702
  8. Eberhart, R. C., Shi, Y., 10.1109/cec.2000.870279, In: Proc. 2000 Congress on Evolutionary Computation 1 (2000), pp. 84-88. DOI10.1109/cec.2000.870279
  9. Eberhart, R. C., Shi, Y., 10.1109/cec.2001.934374, In: Proc. 2001 Congr. Evol. Comput. 1 (2001), pp. 81-86. DOI10.1109/cec.2001.934374
  10. Eiben, A. E., Hinterding, R., Michalewicz, Z., 10.1109/4235.771166, In: IEEE Trans. Evol. Comput. 3 (1999), 124-141. DOI10.1109/4235.771166
  11. García, S., Molina, D., Lozano, M., Herrera, F., 10.1007/s10732-008-9080-4, J. Heurist. 15 (2009), 6, 617-644. DOI10.1007/s10732-008-9080-4
  12. Godara, L. C., 10.1201/9781420042146, CRC Press, Inc., Boca Raton 2001. DOI10.1201/9781420042146
  13. He, Y., Zhou, J., Lu, N., Qin, H., Lu, Y., Differential evolution algorithm combined with chaotic pattern search., Kybernetika 46 (2010), 4, 684-696. MR2722095
  14. Ho, M.-H., Chiu, C.-C., Liao, S.-H., 10.1002/mmce.20604, Int. J. RF Microw. Comput. Eng. 22 (2012), 260-271. DOI10.1002/mmce.20604
  15. Hooke, R., Jeeves, T. A., 10.1145/321062.321069, J. ACM 8 (1961), 212-229. DOI10.1145/321062.321069
  16. Jin, N., Rahmat-Samii, Y., 10.1109/tap.2010.2078477, IEEE Trans. Antennas Propag. 58 (2010), 3786-3794. DOI10.1109/tap.2010.2078477
  17. Jordehi, A. R., Jasni, J., 10.1080/0952813x.2013.782348, J. Exp. Theor. Artif. Intell. 25 (2013), 527-542. DOI10.1080/0952813x.2013.782348
  18. Kennedy, J., Eberhart, R., 10.1109/icnn.1995.488968, In: IEE Internat. Conf on Neural Networks 4 (1995), pp. 1942-1948. DOI10.1109/icnn.1995.488968
  19. Kennedy, J., Spears, W. M., 10.1109/icec.1998.699326, In: IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence 1998, pp. 78-83. DOI10.1109/icec.1998.699326
  20. Khodier, M. M., 10.1049/iet-map.2012.0692, Microwaves, Antennas Propagation, IET 7 (2013), 458-464. DOI10.1049/iet-map.2012.0692
  21. Khodier, M. M., Christodoulou, C. G., 10.1109/tap.2005.851762, IEEE Trans. Antennas Propag. 53 (2005), 2674-2679. DOI10.1109/tap.2005.851762
  22. Lalithamanohar, G., Kumar, A. T. Praveen, Subhashini, K. R., 10.1109/iccspa.2013.6487256, In: 2013 1st Int. Conf. Commun. Signal Process. Their Appl. ICCSPA 2013, pp. 0-5. DOI10.1109/iccspa.2013.6487256
  23. Li, X., Li, W.-T., Shi, X.-W., Yang, J., 10.1002/mmce.20744, Int. J. RF Microw. Comput. Eng. 24 (2014), 161-169. DOI10.1002/mmce.20744
  24. Liu, Y., Jiao, Y.-C., Zhang, Y.-M., 10.1002/mmce.20844, Int. J. RF Microw. Comput. Eng. 25 (2015), 154-163. DOI10.1002/mmce.20844
  25. Mahto, S. K., Choubey, A., Suman, S., 10.1109/spaces.2015.7058246, In: 2015 International Conference on Signal Processing and Communication Engineering Systems, pp. 191-195. DOI10.1109/spaces.2015.7058246
  26. Mandal, D., Ghoshal, S. P., Bhattacharjee, A. K., 10.1002/mmce.20526, Int. J. RF Microw. Comput. Eng. 21 (2011), 376-382. DOI10.1002/mmce.20526
  27. Mercer, R. E., Sampson, J. R., 10.1108/eb005486, Int. J. Systems Cybernet. 7 (1978), 3, 215-228. DOI10.1108/eb005486
  28. Panduro, M. A., Brizuela, C. A., 10.1109/aps.2009.5171514, In: 2009 IEEE Antennas and Propagation Society International Symposium 2009, pp. 1-4. DOI10.1109/aps.2009.5171514
  29. Pedersen, M. E. H., Tuning & Simplifying Heuristical Optimization., University of Southampton 2010. 
  30. Pedersen, M. E. H., , Online, 2011. Available: DOI
  31. Pedersen, M. E. H., Chipperfield, A. J., Local unimodal sampling., Hvass Laboratories Technical Report HL0801 (2008), 1-10. 
  32. Petrella, N., Khodier, M. M., Antonini, M., Ruggieri, M., Barbin, S E., Christodoulou, C. G., 10.1109/mikon.2006.4345374, In: 2006 International Conference on Microwaves, Radar & Wireless Communications 2006, pp. 1087-1090. DOI10.1109/mikon.2006.4345374
  33. Portilla-Flores, E. A., Calva-Yáñez, M.B., Villarreal-Cervantes, M. G., Suárez, P. A. Niño, Sepúlveda-Cervantes, G., 10.14736/kyb-2014-5-0786, Kybernetika 50 (2014), 5, 786-803. DOI10.14736/kyb-2014-5-0786
  34. Robinson, J., Rahmat-Samii, Y., 10.1109/tap.2004.823969, IEEE Trans. Antennas Propag. 52 (2004), 397-407. MR2076528DOI10.1109/tap.2004.823969
  35. Secmen, M., Tasgetiren, M. F., Karabulut, K., 10.1109/sde.2013.6601447, In: Proc. 2013 IEEE Symposium on Differential Evolution (SDE) 2013, pp. 92-98. DOI10.1109/sde.2013.6601447
  36. Shi, Y., Eberhart, R. C., 10.1007/bfb0040810, In: Proc. 7th International Conference on Evolutionary Programming VII 1998, pp. 591-600. DOI10.1007/bfb0040810
  37. Shihab, M., Najjar, Y., Dib, N., Khodier, M., Design of non-uniform circular antenna arrays using particle swarm optimization., J. Electr. Eng. 59 (2008), 216-220. 
  38. Storn, R., 10.1109/nafips.1996.534789, In: Bienn. Conf. North Am. Fuzzy Inf. Process. Soc. 1996, pp. 519-523. DOI10.1109/nafips.1996.534789
  39. Storn, R., Price, K., 10.1023/a:1008202821328, J. Glob. Optim. 11 (1997), 341-359. MR1479553DOI10.1023/a:1008202821328
  40. Trelea, I. C., 10.1016/s0020-0190(02)00447-7, Inf. Process. Lett. 85 (2003), 317-325. MR1956454DOI10.1016/s0020-0190(02)00447-7
  41. Yang, S. H., Kiang, J. F., 10.1109/tap.2013.2287280, IEEE Trans. Antennas Propag. 62 (2014), 138-144. DOI10.1109/tap.2013.2287280

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.