A note on the powers of Cesàro bounded operators
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 4, page 1091-1100
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLéka, Zoltán. "A note on the powers of Cesàro bounded operators." Czechoslovak Mathematical Journal 60.4 (2010): 1091-1100. <http://eudml.org/doc/196551>.
@article{Léka2010,
abstract = {In this note we give a negative answer to Zem�nek’s question (1994) of whether it always holds that a Cesàro bounded operator $T$ on a Hilbert space with a single spectrum satisfies $\lim _\{n \rightarrow \infty \} \Vert T^\{n+1\} - T^n\Vert = 0.$},
author = {Léka, Zoltán},
journal = {Czechoslovak Mathematical Journal},
keywords = {Volterra operator; stability of operators; Volterra operator; stability of operators},
language = {eng},
number = {4},
pages = {1091-1100},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on the powers of Cesàro bounded operators},
url = {http://eudml.org/doc/196551},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Léka, Zoltán
TI - A note on the powers of Cesàro bounded operators
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 4
SP - 1091
EP - 1100
AB - In this note we give a negative answer to Zem�nek’s question (1994) of whether it always holds that a Cesàro bounded operator $T$ on a Hilbert space with a single spectrum satisfies $\lim _{n \rightarrow \infty } \Vert T^{n+1} - T^n\Vert = 0.$
LA - eng
KW - Volterra operator; stability of operators; Volterra operator; stability of operators
UR - http://eudml.org/doc/196551
ER -
References
top- Allan, G. R., Power-bounded elements in a Banach algebra and a theorem of Gelfand, In: Automatic Continuity and Banach Algebras, Vol. 21 Proc. Centre Math. Anal. Austral. Nat. Univ. Canberra (1989), 1-12. (1989) Zbl0703.46029MR1021992
- Allan, G. R., Power-bounded elements and radical Banach algebras, In: Linear Operators, Vol. 38 Banach Center Publ. J. Janas Warsaw (1997),9-16. (1997) Zbl0884.47003MR1456997
- Batty, C. J. K., Asymptotic behaviour of semigroups of operators, In: Functional Analysis and Operator Theory, Vol. 30 J. Zemánek Banach Center Publ. Warsaw (1994), 35-52. (1994) Zbl0818.47034MR1285599
- Chill, R., Tomilov, Y., Stability of operator semigroups: ideas and results, In: Perspectives in Operator Theory, Vol. 75 W. Arendt Banach Center Publ. Warsaw (2007), 71-109. (2007) Zbl1136.47026MR2336713
- Esterle, J., 10.1007/BFb0064548, Radical Banach Algebras and Automatic Continuity. Lecture Notes in Math., Vol. 975 (1983), Springer Berlin-Heidelberg-New York 66-162. (1983) MR0697579DOI10.1007/BFb0064548
- Halmos, P., Hilbert Space Problem Book. Grad. Texts in Math, Mir Moskau (1970). (1970) MR0268689
- Katznelson, Y., Tzafriri, L., 10.1016/0022-1236(86)90101-1, J. Funct. Anal. 68 (1986), 313-328. (1986) Zbl0611.47005MR0859138DOI10.1016/0022-1236(86)90101-1
- Montes-Rodríguez, A., Sánchez-Álvarez, J., Zemánek, J., Uniform Abel-Kreiss boundedness and the extremal behaviour of the Volterra operator, Proc. London Math. Soc. 91 (2005), 761-788. (2005) MR2180462
- Pytlik, T., 10.4064/cm-51-1-287-294, Colloq. Math. 51 (1987), 287-294. (1987) Zbl0632.46043MR0891298DOI10.4064/cm-51-1-287-294
- Szegö, G., Orthogonal Polynomials, 4th ed. Amer. Math. Soc. Colloq. Publ., Vol. 23, Amer. Math. Soc. Providence (1975). (1975) MR0310533
- Tomilov, Y., Zem�nek, J., 10.1017/S0305004103007436, Math. Proc. Camb. Philos. Soc. 137 (2004), 209-225. (2004) MR2075049DOI10.1017/S0305004103007436
- Tsedenbayar, D., 10.4064/sm156-1-4, Studia Math. 156 (2003), 59-66. (2003) Zbl1028.47002MR1961061DOI10.4064/sm156-1-4
- Zemánek, J., On the Gelfand-Hille theorems, In: Functional Analysis and Operator Theory, Vol. 30 J. Zemánek Banach Center Publ. Warsaw (1994), 369-385. (1994) MR1285622
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.