A note on the powers of Cesàro bounded operators

Zoltán Léka

Czechoslovak Mathematical Journal (2010)

  • Volume: 60, Issue: 4, page 1091-1100
  • ISSN: 0011-4642

Abstract

top
In this note we give a negative answer to Zem�nek’s question (1994) of whether it always holds that a Cesàro bounded operator T on a Hilbert space with a single spectrum satisfies lim n T n + 1 - T n = 0 .

How to cite

top

Léka, Zoltán. "A note on the powers of Cesàro bounded operators." Czechoslovak Mathematical Journal 60.4 (2010): 1091-1100. <http://eudml.org/doc/196551>.

@article{Léka2010,
abstract = {In this note we give a negative answer to Zem�nek’s question (1994) of whether it always holds that a Cesàro bounded operator $T$ on a Hilbert space with a single spectrum satisfies $\lim _\{n \rightarrow \infty \} \Vert T^\{n+1\} - T^n\Vert = 0.$},
author = {Léka, Zoltán},
journal = {Czechoslovak Mathematical Journal},
keywords = {Volterra operator; stability of operators; Volterra operator; stability of operators},
language = {eng},
number = {4},
pages = {1091-1100},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on the powers of Cesàro bounded operators},
url = {http://eudml.org/doc/196551},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Léka, Zoltán
TI - A note on the powers of Cesàro bounded operators
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 4
SP - 1091
EP - 1100
AB - In this note we give a negative answer to Zem�nek’s question (1994) of whether it always holds that a Cesàro bounded operator $T$ on a Hilbert space with a single spectrum satisfies $\lim _{n \rightarrow \infty } \Vert T^{n+1} - T^n\Vert = 0.$
LA - eng
KW - Volterra operator; stability of operators; Volterra operator; stability of operators
UR - http://eudml.org/doc/196551
ER -

References

top
  1. Allan, G. R., Power-bounded elements in a Banach algebra and a theorem of Gelfand, In: Automatic Continuity and Banach Algebras, Vol. 21 Proc. Centre Math. Anal. Austral. Nat. Univ. Canberra (1989), 1-12. (1989) Zbl0703.46029MR1021992
  2. Allan, G. R., Power-bounded elements and radical Banach algebras, In: Linear Operators, Vol. 38 Banach Center Publ. J. Janas Warsaw (1997),9-16. (1997) Zbl0884.47003MR1456997
  3. Batty, C. J. K., Asymptotic behaviour of semigroups of operators, In: Functional Analysis and Operator Theory, Vol. 30 J. Zemánek Banach Center Publ. Warsaw (1994), 35-52. (1994) Zbl0818.47034MR1285599
  4. Chill, R., Tomilov, Y., Stability of operator semigroups: ideas and results, In: Perspectives in Operator Theory, Vol. 75 W. Arendt Banach Center Publ. Warsaw (2007), 71-109. (2007) Zbl1136.47026MR2336713
  5. Esterle, J., 10.1007/BFb0064548, Radical Banach Algebras and Automatic Continuity. Lecture Notes in Math., Vol. 975 (1983), Springer Berlin-Heidelberg-New York 66-162. (1983) MR0697579DOI10.1007/BFb0064548
  6. Halmos, P., Hilbert Space Problem Book. Grad. Texts in Math, Mir Moskau (1970). (1970) MR0268689
  7. Katznelson, Y., Tzafriri, L., 10.1016/0022-1236(86)90101-1, J. Funct. Anal. 68 (1986), 313-328. (1986) Zbl0611.47005MR0859138DOI10.1016/0022-1236(86)90101-1
  8. Montes-Rodríguez, A., Sánchez-Álvarez, J., Zemánek, J., Uniform Abel-Kreiss boundedness and the extremal behaviour of the Volterra operator, Proc. London Math. Soc. 91 (2005), 761-788. (2005) MR2180462
  9. Pytlik, T., 10.4064/cm-51-1-287-294, Colloq. Math. 51 (1987), 287-294. (1987) Zbl0632.46043MR0891298DOI10.4064/cm-51-1-287-294
  10. Szegö, G., Orthogonal Polynomials, 4th ed. Amer. Math. Soc. Colloq. Publ., Vol. 23, Amer. Math. Soc. Providence (1975). (1975) MR0310533
  11. Tomilov, Y., Zem�nek, J., 10.1017/S0305004103007436, Math. Proc. Camb. Philos. Soc. 137 (2004), 209-225. (2004) MR2075049DOI10.1017/S0305004103007436
  12. Tsedenbayar, D., 10.4064/sm156-1-4, Studia Math. 156 (2003), 59-66. (2003) Zbl1028.47002MR1961061DOI10.4064/sm156-1-4
  13. Zemánek, J., On the Gelfand-Hille theorems, In: Functional Analysis and Operator Theory, Vol. 30 J. Zemánek Banach Center Publ. Warsaw (1994), 369-385. (1994) MR1285622

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.