Asymptotic behaviour of semigroups of operators

C. Batty

Banach Center Publications (1994)

  • Volume: 30, Issue: 1, page 35-52
  • ISSN: 0137-6934

How to cite

top

Batty, C.. "Asymptotic behaviour of semigroups of operators." Banach Center Publications 30.1 (1994): 35-52. <http://eudml.org/doc/262764>.

@article{Batty1994,
author = {Batty, C.},
journal = {Banach Center Publications},
keywords = {peripheral part of the spectrum; power bounded operator; semigroups of operators; asymptotic behaviour; discrete one-parameter semigroups; continuous one-parameter semigroups},
language = {eng},
number = {1},
pages = {35-52},
title = {Asymptotic behaviour of semigroups of operators},
url = {http://eudml.org/doc/262764},
volume = {30},
year = {1994},
}

TY - JOUR
AU - Batty, C.
TI - Asymptotic behaviour of semigroups of operators
JO - Banach Center Publications
PY - 1994
VL - 30
IS - 1
SP - 35
EP - 52
LA - eng
KW - peripheral part of the spectrum; power bounded operator; semigroups of operators; asymptotic behaviour; discrete one-parameter semigroups; continuous one-parameter semigroups
UR - http://eudml.org/doc/262764
ER -

References

top
  1. [1] H. Alexander, On a problem of Stolzenberg in polynomial convexity, Illinois J. Math. 22 (1978), 149-160. Zbl0376.32013
  2. [2] G. R. Allan, A. G. O'Farrell and T. J. Ransford, A Tauberian theorem arising in operator theory, Bull. London Math. Soc. 19 (1987), 537-545. Zbl0652.46041
  3. [3] G. R. Allan and T. J. Ransford, Power-dominated elements in a Banach algebra, Studia Math. 94 (1989), 63-79. Zbl0705.46021
  4. [4] W. Arendt, Resolvent positive operators, Proc. London Math. Soc. 54 (1987), 321-349. Zbl0617.47029
  5. [5] W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306 (1988), 837-852. Zbl0652.47022
  6. [6] W. Arendt and C. J. K. Batty, A complex Tauberian theorem and mean ergodic semigroups, preprint. Zbl0836.47032
  7. [7] W. Arendt, F. Neubrander and U. Schlotterbeck, Interpolation of semigroups and integrated semigroups, Semesterbericht Funktionalanalysis Tübingen 15 (1988/89), 1-14. Zbl0782.47035
  8. [8] W. Arendt and J. Prüss, Vector-valued Tauberian theorems and asymptotic behavior of linear Volterra equations, SIAM J. Appl. Math. 23 (1992), 412-448. Zbl0765.45009
  9. [9] R. Arens, Inverse-producing extensions of normed algebras, Trans. Amer. Math. Soc. 88 (1958), 536-548. Zbl0082.11105
  10. [10] C. J. K. Batty, Tauberian theorems for the Laplace-Stieltjes transform, ibid. 322 (1990), 783-804. Zbl0716.44001
  11. [11] C. J. K. Batty and D. A. Greenfield, On the invertibility of isometric semigroup representations, preprint. Zbl0803.47033
  12. [12] C. J. K. Batty and Vũ Quôc Phóng, Stability of individual elements under one-parameter semigroups, Trans. Amer. Math. Soc. 322 (1990), 805-818. 
  13. [13] C. J. K. Batty and Vũ Quôc Phóng, Stability of strongly continuous representations of abelian semigroups, Math. Z. 209 (1992), 75-88. 
  14. [14] E. B. Davies, One-Parameter Semigroups, Academic Press, London, 1980. Zbl0457.47030
  15. [15] O. El Mennaoui, Comportement asymptotique des semi-groupes intégrés, J. Comput. Appl. Math., to appear. 
  16. [16] J. Esterle, E. Strouse and F. Zouakia, Theorems of Katznelson-Tzafriri type for contractions, J. Funct. Anal. 94 (1990), 273-287. Zbl0723.47013
  17. [17] J. Esterle, E. Strouse and F. Zouakia, Stabilité asymptotique de certains semigroupes d'opérateurs, J. Operator Theory, to appear. 
  18. [18] I. Gelfand, Zur Theorie der Charaktere der abelschen topologischen Gruppen, Mat. Sb. 9 (51) (1941), 49-50. Zbl67.0407.02
  19. [19] D. A. Greenfield, D.Phil. thesis, Oxford, in preparation. 
  20. [20] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc., Providence, 1957. 
  21. [21] S. Huang and F. Räbiger, Superstable C 0 -semigroups on Banach spaces, preprint. Zbl0798.47034
  22. [22] A. E. Ingham, On Wiener's method in Tauberian theorems, Proc. London Math. Soc. 38 (1935), 458-480. Zbl0010.35202
  23. [23] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 313-328. Zbl0611.47005
  24. [24] J. Korevaar, On Newman's quick way to the prime number theorem, Math. Intelligencer 4 (1982), 108-115. Zbl0496.10027
  25. [25] U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985. 
  26. [26] Yu. I. Lyubich, On the spectrum of a representation of an abelian topological group, Dokl. Akad. Nauk SSSR 200 (1971), 777-780 (in Russian); English transl.: Soviet Math. Dokl. 12 (1971), 1482-1486. 
  27. [27] Yu. I. Lyubich, Introduction to the Theory of Banach Representations of Groups, Birkhäuser, Basel, 1988. 
  28. [28] Yu. I. Lyubich and Vũ Quôc Phóng, Asymptotic stability of linear differential equations on Banach spaces, Studia Math. 88 (1988), 37-42. Zbl0639.34050
  29. [29] Yu. I. Lyubich and Vũ Quôc Phóng, A spectral criterion for almost periodicity of one-parameter semigroups, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 47 (1987), 36-41 (in Russian). 
  30. [30] Yu. I. Lyubich and Vũ Quôc Phóng, A spectral criterion for almost periodicity of representations of abelian semigroups, ibid. 51 (1987) (in Russian). 
  31. [31] R. Nagel and F. Räbiger, Superstable operators on Banach spaces, Israel J. Math. 81 (1993), 213-226. Zbl0788.47003
  32. [32] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970. Zbl0201.45003
  33. [33] D. J. Newman, Simple analytic proof of the prime number theorem, Amer. Math. Monthly 87 (1980), 693-696. Zbl0444.10033
  34. [34] G. K. Pedersen, C*-Algebras and Their Automorphism Groups, Academic Press, London, 1979. Zbl0416.46043
  35. [35] Vũ Quôc Phóng, Theorems of Katznelson-Tzafriri type for semigroups of operators, J. Funct. Anal. 103 (1992), 74-84. Zbl0770.47017
  36. [36] G. M. Sklyar and V. Ya. Shirman, On the asymptotic stability of a linear differential equation in a Banach space, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 37 (1982), 127-132 (in Russian). Zbl0521.34063
  37. [37] G. Stolzenberg, Polynomially and rationally convex sets, Acta Math. 109 (1963), 259-289. Zbl0122.08404
  38. [38] E. L. Stout, The Theory of Uniform Algebras, Bogden & Quigley, Tarrytown-on-Hudson, 1971. Zbl0286.46049
  39. [39] J. Wermer, Banach Algebras and Several Complex Variables, Springer, New York, 1976. 
  40. [40] W. Żelazko, On a certain class of non-removable ideals in Banach algebras, Studia Math. 44 (1972), 87-92. Zbl0213.40603

Citations in EuDML Documents

top
  1. C. Batty, Some Tauberian theorems related to operator theory
  2. Yu. Tomilov, On the spectral bound of the generator of a C 0 -semigroup
  3. Olavi Nevanlinna, On the growth of the resolvent operators for power bounded operators
  4. Zoltán Léka, A note on the powers of Cesàro bounded operators
  5. Vũ Phóng, Almost periodic and strongly stable semigroups of operators
  6. Driss Drissi, On a theorem of Gelfand and its local generalizations
  7. Adam Bobrowski, A note on convergence of semigroups
  8. Jaroslav Zemánek, On the Gelfand-Hille theorems

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.