Cauchy's residue theorem for a class of real valued functions
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 4, page 1043-1048
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSarić, Branko. "Cauchy's residue theorem for a class of real valued functions." Czechoslovak Mathematical Journal 60.4 (2010): 1043-1048. <http://eudml.org/doc/196565>.
@article{Sarić2010,
abstract = {Let $[ a,b] $ be an interval in $\mathbb \{R\}$ and let $F$ be a real valued function defined at the endpoints of $[a,b]$ and with a certain number of discontinuities within $[ a,b] $. Assuming $F$ to be differentiable on a set $[ a,b] \backslash E$ to the derivative $f$, where $E$ is a subset of $[ a,b] $ at whose points $F$ can take values $\pm \infty $ or not be defined at all, we adopt the convention that $F$ and $f$ are equal to $0$ at all points of $E$ and show that $\mathcal \{KH\}\hbox\{\rm -vt\}\int _a^bf=F( b) -F( a) $, where $\mathcal \{KH\}\hbox\{\rm -vt\}$ denotes the total value of the Kurzweil-Henstock integral. The paper ends with a few examples that illustrate the theory.},
author = {Sarić, Branko},
journal = {Czechoslovak Mathematical Journal},
keywords = {Kurzweil-Henstock integral; Cauchy's residue theorem; Kurzweil-Henstock integral; Cauchy's residue theorem},
language = {eng},
number = {4},
pages = {1043-1048},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Cauchy's residue theorem for a class of real valued functions},
url = {http://eudml.org/doc/196565},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Sarić, Branko
TI - Cauchy's residue theorem for a class of real valued functions
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 4
SP - 1043
EP - 1048
AB - Let $[ a,b] $ be an interval in $\mathbb {R}$ and let $F$ be a real valued function defined at the endpoints of $[a,b]$ and with a certain number of discontinuities within $[ a,b] $. Assuming $F$ to be differentiable on a set $[ a,b] \backslash E$ to the derivative $f$, where $E$ is a subset of $[ a,b] $ at whose points $F$ can take values $\pm \infty $ or not be defined at all, we adopt the convention that $F$ and $f$ are equal to $0$ at all points of $E$ and show that $\mathcal {KH}\hbox{\rm -vt}\int _a^bf=F( b) -F( a) $, where $\mathcal {KH}\hbox{\rm -vt}$ denotes the total value of the Kurzweil-Henstock integral. The paper ends with a few examples that illustrate the theory.
LA - eng
KW - Kurzweil-Henstock integral; Cauchy's residue theorem; Kurzweil-Henstock integral; Cauchy's residue theorem
UR - http://eudml.org/doc/196565
ER -
References
top- Bartle, R. G., 10.1090/gsm/032/07, Graduate Studies in Math. Vol. 32, AMS, Providence (2001). (2001) Zbl0968.26001MR1817647DOI10.1090/gsm/032/07
- Garces, I. J. L., Lee, P. Y., 10.11650/twjm/1500407260, Taiw. J. Math. 4 (2000), 439-445. (2000) MR1779108DOI10.11650/twjm/1500407260
- Gordon, R. A., 10.1090/gsm/004/09, Graduate Studies in Math., Vol. 4, AMS, Providence (1994). (1994) Zbl0807.26004MR1288751DOI10.1090/gsm/004/09
- Macdonald, A., 10.14321/realanalexch.27.2.0739, Real Analysis Exchange 27 (2002), 739-747. (2002) Zbl1059.26008MR1923163DOI10.14321/realanalexch.27.2.0739
- Sinha, V., Rana, I. K., 10.14321/realanalexch.29.2.0979, Real Analysis Exchange 29 (2003/2004), 979-981. (2003) MR2083833DOI10.14321/realanalexch.29.2.0979
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.