The Henstock-Kurzweil integral
Paul M. Musial, Yoram Sagher (2004)
Studia Mathematica
Similarity:
We present a method of integration along the lines of the Henstock-Kurzweil integral. All -derivatives are integrable in this method.
Paul M. Musial, Yoram Sagher (2004)
Studia Mathematica
Similarity:
We present a method of integration along the lines of the Henstock-Kurzweil integral. All -derivatives are integrable in this method.
Jan Malý, Washek Frank Pfeffer (2016)
Mathematica Bohemica
Similarity:
The generalized Riemann integral of Pfeffer (1991) is defined on all bounded subsets of , but it is additive only with respect to pairs of disjoint sets whose closures intersect in a set of -finite Hausdorff measure of codimension one. Imposing a stronger regularity condition on partitions of sets, we define a Riemann-type integral which satisfies the usual additivity condition and extends the integral of Pfeffer. The new integral is lipeomorphism-invariant and closed with respect...
Erik Talvila (2006)
Mathematica Bohemica
Similarity:
If is a Henstock-Kurzweil integrable function on the real line, the Alexiewicz norm of is where the supremum is taken over all intervals . Define the translation by . Then tends to as tends to , i.e., is continuous in the Alexiewicz norm. For particular functions, can tend to 0 arbitrarily slowly. In general, as , where is the oscillation of . It is shown that if is a primitive of then . An example shows that the function need not be in . However, if...
Jae Myung Park, Hyung Won Ryu, Hoe Kyoung Lee, Deuk Ho Lee (2012)
Czechoslovak Mathematical Journal
Similarity:
In this paper, we define the -integral of real-valued functions defined on an interval and investigate important properties of the -integral. In particular, we show that a function is -integrable on if and only if there exists an function such that almost everywhere on . It can be seen easily that every McShane integrable function on is -integrable and every -integrable function on is Henstock integrable. In addition, we show that the -integral is equivalent to...
Salvador Sánchez-Perales, Francisco J. Mendoza-Torres (2020)
Czechoslovak Mathematical Journal
Similarity:
In the present paper, we investigate the existence of solutions to boundary value problems for the one-dimensional Schrödinger equation , where and are Henstock-Kurzweil integrable functions on . Results presented in this article are generalizations of the classical results for the Lebesgue integral.