A note on maximal estimates for stochastic convolutions

Mark Veraar; Lutz Weis

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 3, page 743-758
  • ISSN: 0011-4642

Abstract

top
In stochastic partial differential equations it is important to have pathwise regularity properties of stochastic convolutions. In this note we present a new sufficient condition for the pathwise continuity of stochastic convolutions in Banach spaces.

How to cite

top

Veraar, Mark, and Weis, Lutz. "A note on maximal estimates for stochastic convolutions." Czechoslovak Mathematical Journal 61.3 (2011): 743-758. <http://eudml.org/doc/196573>.

@article{Veraar2011,
abstract = {In stochastic partial differential equations it is important to have pathwise regularity properties of stochastic convolutions. In this note we present a new sufficient condition for the pathwise continuity of stochastic convolutions in Banach spaces.},
author = {Veraar, Mark, Weis, Lutz},
journal = {Czechoslovak Mathematical Journal},
keywords = {stochastic convolutions; maximal inequalities; path-continuity; stochastic partial differential equations; $H^\infty $-calculus; $\gamma $-radonifying operators; exponential tail estimates; stochastic convolution; tail estimate; maximal inequality; path-continuity; stochastic partial differential equation; -calculus},
language = {eng},
number = {3},
pages = {743-758},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on maximal estimates for stochastic convolutions},
url = {http://eudml.org/doc/196573},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Veraar, Mark
AU - Weis, Lutz
TI - A note on maximal estimates for stochastic convolutions
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 3
SP - 743
EP - 758
AB - In stochastic partial differential equations it is important to have pathwise regularity properties of stochastic convolutions. In this note we present a new sufficient condition for the pathwise continuity of stochastic convolutions in Banach spaces.
LA - eng
KW - stochastic convolutions; maximal inequalities; path-continuity; stochastic partial differential equations; $H^\infty $-calculus; $\gamma $-radonifying operators; exponential tail estimates; stochastic convolution; tail estimate; maximal inequality; path-continuity; stochastic partial differential equation; -calculus
UR - http://eudml.org/doc/196573
ER -

References

top
  1. Albiac, F., Kalton, N. J., Topics in Banach Space Theory. Graduate Texts in Mathematics, Vol. 233, Springer Berlin (2006). (2006) MR2192298
  2. Amann, H., 10.1007/BF02774019, Isr. J. Math. 45 (1983), 225-254. (1983) Zbl0535.35017MR0719122DOI10.1007/BF02774019
  3. Brze{'z}niak, Z., 10.1007/BF01048965, Potential Anal. 4 (1995), 1-45. (1995) MR1313905DOI10.1007/BF01048965
  4. Brze{'z}niak, Z., 10.1080/17442509708834122, Stochastics Stochastics Rep. 61 (1997), 245-295. (1997) MR1488138DOI10.1080/17442509708834122
  5. Brze{'z}niak, Z., Hausenblas, E., 10.1007/s00440-008-0181-7, Probab. Theory Relat. Fields 145 (2009), 615-637. (2009) MR2529441DOI10.1007/s00440-008-0181-7
  6. Brze'zniak, Z., Peszat, S., Maximal inequalities and exponential estimates for stochastic convolutions in Banach spaces, Stochastic Processes, Physics and Geometry: New Interplays I (Leipzig, 1999). CMS Conf. Proc., Vol. 28 American Mathematical Society Providence (2000), 55-64. (2000) MR1803378
  7. Calderón, A.-P., 10.4064/sm-24-2-113-190, Stud. Math. 24 (1964), 113-190. (1964) MR0167830DOI10.4064/sm-24-2-113-190
  8. Cox, S. G., Veraar, M. C., Vector-valued decoupling and the Burkholder-Davis-Gundy inequality, (2010), (to appear) Ill. J. Math. (2010) MR3006692
  9. Prato, G. Da, Zabczyk, J., Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, Vol. 44 Cambridge University Press Cambridge (1992). (1992) Zbl0761.60052MR1207136
  10. Davis, B., 10.1215/S0012-7094-76-04354-4, Duke Math. J. 43 (1976), 697-704. (1976) MR0418219DOI10.1215/S0012-7094-76-04354-4
  11. Denk, R., Dore, G., Hieber, M., Prüss, J., Venni, A., New thoughts on old results of R. T. Seeley, Math. Ann. 328 (2004), 545-583. (2004) MR2047641
  12. Deville, R., Godefroy, G., Zizler, V., Smoothness and Renormings in Banach Spaces. Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 64, Longman Scientific & Technical Harlow (1993). (1993) MR1211634
  13. Fröhlich, A. M., Weis, L., 10.24033/bsmf.2520, Bull. Soc. Math. Fr. 134 (2006), 487-508. (2006) MR2364942DOI10.24033/bsmf.2520
  14. Haak, B. H., Kunstmann, P. C., 10.1007/s00020-005-1416-y, Integral Equations Oper. Theory 55 (2006), 497-533. (2006) Zbl1138.93361MR2250161DOI10.1007/s00020-005-1416-y
  15. Haase, M., The Functional Calculus for Sectorial Operators. Operator Theory: Advances and Applications, Vol. 169, Birkhäuser Basel (2006). (2006) MR2244037
  16. Hausenblas, E., Seidler, J., 10.1023/A:1013717013421, Czechoslovak Math. J. 51(126) (2001), 785-790. (2001) Zbl1001.60065MR1864042DOI10.1023/A:1013717013421
  17. Hausenblas, E., Seidler, J., 10.1080/07362990701673047, Stochastic Anal. Appl. 26 (2008), 98-119. (2008) Zbl1153.60035MR2378512DOI10.1080/07362990701673047
  18. Hytönen, T., Neerven, J. van, Portal, P., 10.1007/s11854-008-0051-3, J. Anal. Math. 106 (2008), 317-351. (2008) MR2448989DOI10.1007/s11854-008-0051-3
  19. Kalton, N. J., Weis, L. W., The H -calculus and square function estimates, Preprint (2004). (2004) 
  20. Kunstmann, P. C., Weis, L. W., 10.1007/978-3-540-44653-8_2, Functional Analytic Methods for Evolution Equations. Lecture Notes Math., Vol. 1855 Springer Berlin (2004), 65-311. (2004) Zbl1097.47041MR2108959DOI10.1007/978-3-540-44653-8_2
  21. Langer, M., Maz'ya, V., 10.1006/jfan.1999.3393, J. Funct. Anal. 164 (1999), 73-109. (1999) MR1694522DOI10.1006/jfan.1999.3393
  22. Lenglart, E., Rélation de domination entre deux processus, Ann. Inst. Henri Poincaré, Nouv. Sér, Sect. B 13 (1977), 171-179 French. (1977) Zbl0373.60054MR0471069
  23. Liskevich, V., Sobol, Z., Vogt, H., 10.1006/jfan.2001.3909, J. Funct. Anal. 193 (2002), 55-76. (2002) Zbl1020.47029MR1923628DOI10.1006/jfan.2001.3909
  24. McIntosh, A., Operators which have an H functional calculus, Miniconference Operator Theory and Partial Differential Equations (North Ryde, 1986), Proc. Cent. Math. Anal. Austr. Nat. Univ., Vol. 14 Austr. Nat. Univ. Canberra (1986), 210-231. (1986) MR0912940
  25. Neerven, J. M. A. M. van, γ -Radonifying operators—a survey, Spectral Theory and Harmonic Analysis (Canberra, 2009). Proc. Cent. Math. Anal. Austr. Nat. Univ., Vol. 44 Austral. Nat. Univ. Canberra (2010), 1-62. (2010) MR2655391
  26. Neerven, J. M. A. M. van, Veraar, M. C., Weis, L., 10.1214/009117906000001006, Ann. Probab. 35 (2007), 1438-1478. (2007) MR2330977DOI10.1214/009117906000001006
  27. Neerven, J. M. A. M. van, Veraar, M. C., Weis, L., 10.1016/j.jfa.2008.03.015, J. Funct. Anal. 255 (2008), 940-993. (2008) MR2433958DOI10.1016/j.jfa.2008.03.015
  28. Neerven, J. M. A. M. van, Weis, L., Weak limits and integrals of Gaussian covariances in Banach spaces, Probab. Math. Stat. 25 (2005), 55-74. (2005) MR2211356
  29. Pinelis, I., 10.1214/aop/1176988477, Ann. Probab. 22 (1994), 1679-1706. (1994) Zbl0836.60015MR1331198DOI10.1214/aop/1176988477
  30. Pisier, G., 10.1007/BF02760337, Isr. J. Math. 20 (1975), 326-350. (1975) Zbl0344.46030MR0394135DOI10.1007/BF02760337
  31. Pisier, G., Some results on Banach spaces without local unconditional structure, Compos. Math. 37 (1978), 3-19. (1978) Zbl0381.46010MR0501916
  32. Rosiński, J., Suchanecki, Z., 10.4064/cm-43-1-183-201, Colloq. Math. 43 (1980), 183-201. (1980) MR0615985DOI10.4064/cm-43-1-183-201
  33. Seidler, J., 10.1214/EJP.v15-808, Electron. J. Probab. 15 (2010), 1556-1573. (2010) MR2735374DOI10.1214/EJP.v15-808
  34. Suárez, J., Weis, L., Interpolation of Banach spaces by the γ -method, Methods in Banach space theory. London Math. Soc. Lecture Note Series Vol. 337. Proc. Conf. on Banach Spaces, Cácres, Spain, Sept. 13-18, 2004 J. M. F. Castillo Cambridge Univ. Press Cambridge (2006), 293-306. (2006) MR2326391
  35. Triebel, H., Interpolation Theory, Function Spaces, Differential Operators, 2nd ed, Barth Leipzig (1995). (1995) MR1328645
  36. Veraar, M. C., 10.1080/17442500701594516, Stochastics 79 (2007), 601-618. (2007) Zbl1129.60050MR2368370DOI10.1080/17442500701594516
  37. Weis, L. W., 10.1007/3-7643-7601-5_16, Partial differential equations and functional analysis. Oper. Theory Adv. Appl., Vol. 168 Birkhäuser Basel (2006), 263-294. (2006) Zbl1111.47020MR2240065DOI10.1007/3-7643-7601-5_16

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.