A note on maximal inequality for stochastic convolutions
Czechoslovak Mathematical Journal (2001)
- Volume: 51, Issue: 4, page 785-790
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHausenblas, Erika, and Seidler, Jan. "A note on maximal inequality for stochastic convolutions." Czechoslovak Mathematical Journal 51.4 (2001): 785-790. <http://eudml.org/doc/30671>.
@article{Hausenblas2001,
abstract = {Using unitary dilations we give a very simple proof of the maximal inequality for a stochastic convolution \[ \int ^t\_0 S(t-s)\psi (s)\mathrm \{d\}W(s) \]
driven by a Wiener process $W$ in a Hilbert space in the case when the semigroup $S(t)$ is of contraction type.},
author = {Hausenblas, Erika, Seidler, Jan},
journal = {Czechoslovak Mathematical Journal},
keywords = {infinite-dimensional Wiener process; stochastic convolution; maximal inequality; infinite-dimensional Wiener process; stochastic convolution; maximal inequality},
language = {eng},
number = {4},
pages = {785-790},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on maximal inequality for stochastic convolutions},
url = {http://eudml.org/doc/30671},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Hausenblas, Erika
AU - Seidler, Jan
TI - A note on maximal inequality for stochastic convolutions
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 4
SP - 785
EP - 790
AB - Using unitary dilations we give a very simple proof of the maximal inequality for a stochastic convolution \[ \int ^t_0 S(t-s)\psi (s)\mathrm {d}W(s) \]
driven by a Wiener process $W$ in a Hilbert space in the case when the semigroup $S(t)$ is of contraction type.
LA - eng
KW - infinite-dimensional Wiener process; stochastic convolution; maximal inequality; infinite-dimensional Wiener process; stochastic convolution; maximal inequality
UR - http://eudml.org/doc/30671
ER -
References
top- 10.1080/17442509708834122, Stochastics Stochastics Rep. 61 (1997), 245–295. (1997) MR1488138DOI10.1080/17442509708834122
- Maximal inequalities and exponential estimates for stochastic convolutions in Banach spaces, Stochastic Processes, Physics and Geometry: New Interplays, I (Leipzig, 1999), Amer. Math. Soc., Providence, 2000, pp. 55–64. (2000) MR1803378
- Semi-linear stochastic differential equations in Hilbert spaces, Boll. Un. Mat. Ital. A (5) 16 (1979), 168–177. (1979) MR0530145
- Regularity of solutions of linear stochastic equations in Hilbert spaces, Stochastics 23 (1987), 1–23. (1987) MR0920798
- 10.1080/07362999208809260, Stochastic Anal. Appl. 10 (1992), 143–153. (1992) MR1154532DOI10.1080/07362999208809260
- Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. (1992) MR1207136
- Quantum Theory of Open Systems, Academic Press, London, 1976. (1976) Zbl0388.46044MR0489429
- 10.1016/0167-7152(93)90259-L, Statist. Probab. Lett. 17 (1993), 387–394. (1993) MR1237785DOI10.1016/0167-7152(93)90259-L
- 10.1080/07362998608809094, Stochastic Anal. Appl. 4 (1986), 329–339. (1986) Zbl0622.60066MR0857085DOI10.1080/07362998608809094
- 10.1080/17442508208833233, Stochastics 8 (1982), 139–151. (1982) Zbl0495.60066MR0686575DOI10.1080/17442508208833233
- 10.1080/07362998408809036, Stochastic Anal. Appl. 2 (1984), 245–265. (1984) Zbl0552.60058MR0757338DOI10.1080/07362998408809036
- Da Prato-Zabczyk’s maximal inequality revisited I, Math. Bohem. 118 (1993), 67–106. (1993) Zbl0785.35115MR1213834
- Exponential integrability of stochastic convolutions, Submitted.
- Sur les contractions de l’espace de Hilbert, Acta Sci. Math. Szeged 15 (1953), 87–92. (1953) Zbl0052.12203MR0058128
- Transformations de l’espace de Hilbert, fonctions de type positif sur un groupe, Acta Sci. Math. Szeged 15 (1954), 104–114. (1954) MR0060740
- Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970. (1970) MR0275190
- 10.1080/07362998408809032, Stochastic Anal. Appl. 2 (1984), 187–192. (1984) Zbl0539.60056MR0746435DOI10.1080/07362998408809032
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.