A note on maximal inequality for stochastic convolutions

Erika Hausenblas; Jan Seidler

Czechoslovak Mathematical Journal (2001)

  • Volume: 51, Issue: 4, page 785-790
  • ISSN: 0011-4642

Abstract

top
Using unitary dilations we give a very simple proof of the maximal inequality for a stochastic convolution 0 t S ( t - s ) ψ ( s ) d W ( s ) driven by a Wiener process W in a Hilbert space in the case when the semigroup S ( t ) is of contraction type.

How to cite

top

Hausenblas, Erika, and Seidler, Jan. "A note on maximal inequality for stochastic convolutions." Czechoslovak Mathematical Journal 51.4 (2001): 785-790. <http://eudml.org/doc/30671>.

@article{Hausenblas2001,
abstract = {Using unitary dilations we give a very simple proof of the maximal inequality for a stochastic convolution \[ \int ^t\_0 S(t-s)\psi (s)\mathrm \{d\}W(s) \] driven by a Wiener process $W$ in a Hilbert space in the case when the semigroup $S(t)$ is of contraction type.},
author = {Hausenblas, Erika, Seidler, Jan},
journal = {Czechoslovak Mathematical Journal},
keywords = {infinite-dimensional Wiener process; stochastic convolution; maximal inequality; infinite-dimensional Wiener process; stochastic convolution; maximal inequality},
language = {eng},
number = {4},
pages = {785-790},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on maximal inequality for stochastic convolutions},
url = {http://eudml.org/doc/30671},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Hausenblas, Erika
AU - Seidler, Jan
TI - A note on maximal inequality for stochastic convolutions
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 4
SP - 785
EP - 790
AB - Using unitary dilations we give a very simple proof of the maximal inequality for a stochastic convolution \[ \int ^t_0 S(t-s)\psi (s)\mathrm {d}W(s) \] driven by a Wiener process $W$ in a Hilbert space in the case when the semigroup $S(t)$ is of contraction type.
LA - eng
KW - infinite-dimensional Wiener process; stochastic convolution; maximal inequality; infinite-dimensional Wiener process; stochastic convolution; maximal inequality
UR - http://eudml.org/doc/30671
ER -

References

top
  1. 10.1080/17442509708834122, Stochastics Stochastics Rep. 61 (1997), 245–295. (1997) MR1488138DOI10.1080/17442509708834122
  2. Maximal inequalities and exponential estimates for stochastic convolutions in Banach spaces, Stochastic Processes, Physics and Geometry: New Interplays, I (Leipzig, 1999), Amer.  Math.  Soc., Providence, 2000, pp. 55–64. (2000) MR1803378
  3. Semi-linear stochastic differential equations in Hilbert spaces, Boll. Un. Mat. Ital.  A (5) 16 (1979), 168–177. (1979) MR0530145
  4. Regularity of solutions of linear stochastic equations in Hilbert spaces, Stochastics 23 (1987), 1–23. (1987) MR0920798
  5. 10.1080/07362999208809260, Stochastic Anal. Appl. 10 (1992), 143–153. (1992) MR1154532DOI10.1080/07362999208809260
  6. Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. (1992) MR1207136
  7. Quantum Theory of Open Systems, Academic Press, London, 1976. (1976) Zbl0388.46044MR0489429
  8. 10.1016/0167-7152(93)90259-L, Statist. Probab. Lett. 17 (1993), 387–394. (1993) MR1237785DOI10.1016/0167-7152(93)90259-L
  9. 10.1080/07362998608809094, Stochastic Anal. Appl. 4 (1986), 329–339. (1986) Zbl0622.60066MR0857085DOI10.1080/07362998608809094
  10. 10.1080/17442508208833233, Stochastics 8 (1982), 139–151. (1982) Zbl0495.60066MR0686575DOI10.1080/17442508208833233
  11. 10.1080/07362998408809036, Stochastic Anal. Appl. 2 (1984), 245–265. (1984) Zbl0552.60058MR0757338DOI10.1080/07362998408809036
  12. Da Prato-Zabczyk’s maximal inequality revisited I, Math. Bohem. 118 (1993), 67–106. (1993) Zbl0785.35115MR1213834
  13. Exponential integrability of stochastic convolutions, Submitted. 
  14. Sur les contractions de l’espace de Hilbert, Acta Sci. Math. Szeged 15 (1953), 87–92. (1953) Zbl0052.12203MR0058128
  15. Transformations de l’espace de Hilbert, fonctions de type positif sur un groupe, Acta Sci. Math. Szeged 15 (1954), 104–114. (1954) MR0060740
  16. Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970. (1970) MR0275190
  17. 10.1080/07362998408809032, Stochastic Anal. Appl. 2 (1984), 187–192. (1984) Zbl0539.60056MR0746435DOI10.1080/07362998408809032

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.