On chirality groups and regular coverings of regular oriented hypermaps

Antonio Breda d'Azevedo; Ilda Inácio Rodrigues; Maria Elisa Fernandes

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 4, page 1037-1047
  • ISSN: 0011-4642

Abstract

top
We prove that if the Walsh bipartite map = 𝒲 ( ) of a regular oriented hypermap is also orientably regular then both and have the same chirality group, the covering core of (the smallest regular map covering ) is the Walsh bipartite map of the covering core of and the closure cover of (the greatest regular map covered by ) is the Walsh bipartite map of the closure cover of . We apply these results to the family of toroidal chiral hypermaps ( 3 , 3 , 3 ) b , c = 𝒲 - 1 { 6 , 3 } b , c induced by the family of toroidal bipartite maps { 6 , 3 } b , c .

How to cite

top

Breda d'Azevedo, Antonio, Rodrigues, Ilda Inácio, and Fernandes, Maria Elisa. "On chirality groups and regular coverings of regular oriented hypermaps." Czechoslovak Mathematical Journal 61.4 (2011): 1037-1047. <http://eudml.org/doc/196593>.

@article{BredadAzevedo2011,
abstract = {We prove that if the Walsh bipartite map $\mathcal \{M\}=\mathcal \{W\}(\mathcal \{H\})$ of a regular oriented hypermap $\mathcal \{H\}$ is also orientably regular then both $\mathcal \{M\}$ and $\mathcal \{H\}$ have the same chirality group, the covering core of $\mathcal \{M\}$ (the smallest regular map covering $\mathcal \{M\}$) is the Walsh bipartite map of the covering core of $\mathcal \{H\}$ and the closure cover of $\mathcal \{M\}$ (the greatest regular map covered by $\mathcal \{M\}$) is the Walsh bipartite map of the closure cover of $\mathcal \{H\}$. We apply these results to the family of toroidal chiral hypermaps $(3,3,3)_\{b,c\}=\mathcal \{W\}^\{-1\}\lbrace 6,3\rbrace _\{b,c\}$ induced by the family of toroidal bipartite maps $\lbrace 6,3\rbrace _\{b,c\}$.},
author = {Breda d'Azevedo, Antonio, Rodrigues, Ilda Inácio, Fernandes, Maria Elisa},
journal = {Czechoslovak Mathematical Journal},
keywords = {hypermap; regular covering; chirality group; chirality index; toroidal hypermaps; hypermap; regular covering; chirality group; chirality index; toroidal hypermap},
language = {eng},
number = {4},
pages = {1037-1047},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On chirality groups and regular coverings of regular oriented hypermaps},
url = {http://eudml.org/doc/196593},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Breda d'Azevedo, Antonio
AU - Rodrigues, Ilda Inácio
AU - Fernandes, Maria Elisa
TI - On chirality groups and regular coverings of regular oriented hypermaps
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 4
SP - 1037
EP - 1047
AB - We prove that if the Walsh bipartite map $\mathcal {M}=\mathcal {W}(\mathcal {H})$ of a regular oriented hypermap $\mathcal {H}$ is also orientably regular then both $\mathcal {M}$ and $\mathcal {H}$ have the same chirality group, the covering core of $\mathcal {M}$ (the smallest regular map covering $\mathcal {M}$) is the Walsh bipartite map of the covering core of $\mathcal {H}$ and the closure cover of $\mathcal {M}$ (the greatest regular map covered by $\mathcal {M}$) is the Walsh bipartite map of the closure cover of $\mathcal {H}$. We apply these results to the family of toroidal chiral hypermaps $(3,3,3)_{b,c}=\mathcal {W}^{-1}\lbrace 6,3\rbrace _{b,c}$ induced by the family of toroidal bipartite maps $\lbrace 6,3\rbrace _{b,c}$.
LA - eng
KW - hypermap; regular covering; chirality group; chirality index; toroidal hypermaps; hypermap; regular covering; chirality group; chirality index; toroidal hypermap
UR - http://eudml.org/doc/196593
ER -

References

top
  1. Breda, A., d'Azevedo, A. Breda, Nedela, R., Chirality group and chirality index of Coxeter chiral maps, Ars Comb. 81 (2006), 147-160. (2006) MR2267808
  2. d'Azevedo, A. Breda, 10.4134/JKMS.2006.43.5.991, J. Korean Math. Soc. 43 (2006), 991-1018. (2006) MR2303613DOI10.4134/JKMS.2006.43.5.991
  3. d'Azevedo, A. Breda, Jones, G. A., Double coverings and reflexive abelian hypermaps, Beitr. Algebra Geom. 41 (2000), 371-389. (2000) MR1801428
  4. d'Azevedo, A. Breda, Jones, G., Nedela, R., Škoviera, M., 10.1007/s10801-008-0138-z, J. Algebr. Comb. 29 (2009), 337-355. (2009) MR2496311DOI10.1007/s10801-008-0138-z
  5. d'Azevedo, A. Breda, Nedela, R., Chiral hypermaps of small genus, Beitr. Algebra Geom. 44 (2003), 127-143. (2003) MR1990988
  6. Corn, D., Singerman, D., 10.1016/S0195-6698(88)80064-7, Eur. J. Comb. 9 (1988), 337-351. (1988) Zbl0665.57002MR0950053DOI10.1016/S0195-6698(88)80064-7
  7. Coxeter, H. S. M., Moser, W. O. J., Generators and Relations for Discrete Groups 4th ed, Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 14. Springer-Verlag, Berlin/Heidelberg/New York (1980). (1980) Zbl0422.20001MR0562913
  8. Garbe, D., Über die regulären Zerlegungen geschlossener orientierbarer Flächen, J. Reine Angew. Math. 237 (1969), 39-55. (1969) Zbl0176.22203MR0246198
  9. Johnson, D. L., Presentations of Groups, London Mathematical Society Student Texts 15, Cambridge University Press, Cambridge (1990). (1990) Zbl0696.20027MR1056695
  10. Jones, G. A., Graph imbeddings, groups, and Riemann surfaces, Algebraic methods in graph theory, Conf. Szeged 1978, Colloq. Math. Soc. Janos Bolyai 25, North-Holland, Amsterdam (1981), 297-311. (1981) Zbl0473.05028MR0642049
  11. Jones, G. A., Singerman, D., Maps, hypermaps and triangle groups, The Grothendieck theory of dessins d'enfants. Cambridge: Cambridge University Press. Lond. Math. Soc. Lect. Note Ser. 200 (1994), 115-145. (1994) Zbl0833.20045MR1305395
  12. Nostrand, B., Schulte, E., Weiss, A. I., Constructions of chiral polytopes, Congr. Numerantium 97 (1993), 165-170. (1993) Zbl0812.51017MR1267328
  13. Schulte, E., Weiss, A. I., Chiral polytopes, Applied geometry and discrete mathematics, Festschr. Victor Klee, DIMACS Ser. Discret. Math. Theor. Comput. Sci. 4 (1991), 493-516. (1991) Zbl0741.51019MR1116373
  14. Sherk, F. A., 10.4153/CMB-1962-003-7, Can. Math. Bull. 5 (1962), 13-20. (1962) Zbl0101.40902MR0137030DOI10.4153/CMB-1962-003-7
  15. Thomson, W., The Robert Boyle Lecture, Oxford University Junior Scientific Club, May 16, 1893, reprinted in Baltimore Lectures (C. J. Clay & Sons, London, 1904). 
  16. Walsh, T. R. S., 10.1016/0095-8956(75)90042-8, J. Comb. Theory Ser. B 18 (1975), 155-163. (1975) Zbl0302.05101MR0360328DOI10.1016/0095-8956(75)90042-8
  17. Wilson, S. E., 10.1002/jgt.3190020405, J. Graph Theory 2 (1978), 315-318. (1978) Zbl0407.05027MR0512802DOI10.1002/jgt.3190020405

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.