Fifty years of the method of conjugate gradients or Will computers cope with
Pokroky matematiky, fyziky a astronomie (2002)
- Volume: 47, Issue: 2, page 103-113
- ISSN: 0032-2423
Access Full Article
topHow to cite
topBrandts, Jan, and Křížek, Michal. "Padesát let metody sdružených gradientů aneb Zvládnou počítače soustavy milionů rovnic o milionech neznámých?." Pokroky matematiky, fyziky a astronomie 47.2 (2002): 103-113. <http://eudml.org/doc/196605>.
@article{Brandts2002,
author = {Brandts, Jan, Křížek, Michal},
journal = {Pokroky matematiky, fyziky a astronomie},
keywords = {conjugate gradient method; iterative methods},
language = {cze},
number = {2},
pages = {103-113},
publisher = {Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists},
title = {Padesát let metody sdružených gradientů aneb Zvládnou počítače soustavy milionů rovnic o milionech neznámých?},
url = {http://eudml.org/doc/196605},
volume = {47},
year = {2002},
}
TY - JOUR
AU - Brandts, Jan
AU - Křížek, Michal
TI - Padesát let metody sdružených gradientů aneb Zvládnou počítače soustavy milionů rovnic o milionech neznámých?
JO - Pokroky matematiky, fyziky a astronomie
PY - 2002
PB - Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists
VL - 47
IS - 2
SP - 103
EP - 113
LA - cze
KW - conjugate gradient method; iterative methods
UR - http://eudml.org/doc/196605
ER -
References
top- Arnoldi, W., The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quart. Appl. Math. 9 (1951), 17–29. (1951) Zbl0042.12801MR0042792
- Axelsson, O., Iterative solution methods, Cambridge Univ. Press, Cambridge 1994. (1994) Zbl0813.15021MR1276069
- Axelsson, O., Optimal preconditioners based on rate of convergence estimates for the conjugate gradient method, LN of IMAMM 99 (eds. Míka, S., Brandner, M.), Univ. of West Bohemia, Pilsen 1999, 5–56. (1999)
- Axelsson, O., Barker, V. A., Finite element solution of boundary value problems. Theory and computation, Academic Press, New York 1984. (1984) Zbl0537.65072MR0758437
- Beckermann, B., Kuijlaars, A. B. J., Superlinear convergence of conjugate gradients, SIAM J. Numer. Anal. 39 (2001), 300–329. (2001) Zbl0997.65058MR1860727
- Benzi, M., Tůma, M., A sparse approximate inverse preconditioner for nonsymmetric linear systems, SIAM J. Sci. Comput. 19 (1998), 968–994. (1998) Zbl0930.65027MR1616710
- Brandts, J., Explanation of a phenomenon witnessed in pre-processed GMRES, ENUMATH 99 — Proc. of the 3rd European Conf. on Numer. Math. and Advanced Applications, Jyväskylä, Finland 1999, ed. by Neittaanmäki, P. et al., World Scientific, Singapore 2000, 440–447. (1999) Zbl0969.65027
- Brandts, J., Riccati algorithms for eigenvalues and invariant subspaces of large and sparse matrices, Accepted by Linear Algebra Appl. in 2001. (2001)
- Coppersmith, D., Winograd, S., Matrix multiplication via arithmetic progression, J. Symbolic Comput. 9 (1990), 251–280. (1990) Zbl0702.65046MR1056627
- Daniel, J. W., The conjugate gradient method for linear and nonlinear operator equations, SIAM J. Numer. Anal. 4 (1967), 10–26. (1967) Zbl0154.40302MR0217987
- Golub, G. H., Loan, Ch. F. van, Matrix computation, The John Hopkins Univ. Press, Baltimore 1984. (1984)
- Hestenes, M. R., Stiefel, E., Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Standards 49 (1952), 409–436. (1952) Zbl0048.09901MR0060307
- Jennings, A., Influence of the eigenvalue spectrum on the convergence rate of the conjugate gradient method, J. Inst. Maths Applics 20 (1977), 61–72. (1977) Zbl0364.65028MR0451658
- Kaniel, S., Estimates for some computational techniques in linear algebra, Math. Comp. 20 (1966), 369–378. (1966) Zbl0156.16202MR0234618
- Křížek, M., Neittaanmäki, P., Finite Element Approximation of Variational Problems and Applications, Longman Scientific & Technical, Harlow; John Wiley & Sons, New York 1990. (1990) Zbl0708.65106MR1066462
- Křížek, M., Neittaanmäki, P., Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications, Kluwer Academic Publishers, Dordrecht 1996. (1996) Zbl0859.65128MR1431889
- Křížek, M., Segeth, K., Numerické modelování problémů elektrotechniky, Karolinum, Praha 2001. (2001)
- Lanczos, C., An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Nat. Bur. Standards 45 (1950), 255–282. (1950) Zbl0045.39702MR0042791
- Lanczos, C., Solution of systems of linear equations by minimized iterations, J. Res. Nat. Bur. Standards 49 (1952), 33–53. (1952) MR0051583
- Saad, Y., Schultz, M. H., GMRES: a generalized minimum residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (1986), 856–869. (1986) Zbl0599.65018MR0848568
- Simoncini, V., A stabilized QMR version of block BiCG, SIAM J. Matrix Anal. Appl. 18 (1997), 419–434. (1997) Zbl0872.65024MR1437340
- Simoncini, V., On the convergence of restarted Krylov subspace methods, SIAM J. Matrix Anal. Appl. 22 (2000), 430–452. (2000) Zbl0969.65023MR1780193
- Sluis, A. van der, Vorst, H. van der, The rate of convergence of conjugate gradients, Numer. Math. 48 (1986), 543–560. (1986) Zbl0596.65015MR0839616
- Sorensen, D. C., Implicit application of polynomial filters in a -step Arnoldi method, SIAM J. Matrix Anal. Appl. 13 (1992), 357–385. (1992) Zbl0763.65025MR1146670
- Strassen, V., Gaussian elimination is not optimal, Numer. Math. 13 (1969), 354–356. (1969) Zbl0185.40101MR0248973
- Strassen, V., Algebraic complexity theory, Handbook of Theoretical Computer Science, Vol. A (ed. van Leeuwen, J.), Elsevier, Amsterdam 1990, 634–672. (1990) Zbl0900.68247MR1127177
- Vorst, H. van der, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 13 (1992), 631–644. (1992) Zbl0761.65023MR1149111
- Verzuh, F. M., The solution of simultaneous linear equations with the aid of the 602 calculating punch, Math. Comp. (Math. Tables and other Aids to Computation) 3 (1949), 453–462. (1949) MR0030816
- Zítko, J., Combining the preconditioned conjugate gradient method and a matrix iterative method, Appl. Math. 41 (1996), 19–39. (1996) Zbl0847.65016MR1365137
- Zowe, J., Nondifferentiable optimization — a motivation and short introduction in the subgradient and the bundle concept, ASI Proc. Comp. Math. Progr. 1985, 323–356. (1985) MR0820049
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.