# Novikov superalgebras with ${A}_{0}={A}_{1}{A}_{1}$

Czechoslovak Mathematical Journal (2010)

- Volume: 60, Issue: 4, page 903-907
- ISSN: 0011-4642

## Access Full Article

top## Abstract

top## How to cite

topZhu, Fuhai, and Chen, Zhiqi. "Novikov superalgebras with $A_0=A_1A_1$." Czechoslovak Mathematical Journal 60.4 (2010): 903-907. <http://eudml.org/doc/196620>.

@article{Zhu2010,

abstract = {Novikov superalgebras are related to quadratic conformal superalgebras which correspond to the Hamiltonian pairs and play a fundamental role in completely integrable systems. In this note we show that the Novikov superalgebras with $A_0=A_1A_1$ and $\dim A_1=2$ are of type $N$ and give a class of Novikov superalgebras of type $S$ with $A_0=A_1A_1$.},

author = {Zhu, Fuhai, Chen, Zhiqi},

journal = {Czechoslovak Mathematical Journal},

keywords = {Novikov algebra; Novikov superalgebra; type $N$; type $S$; Novikov algebra; Novikov superalgebra; type ; type },

language = {eng},

number = {4},

pages = {903-907},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {Novikov superalgebras with $A_0=A_1A_1$},

url = {http://eudml.org/doc/196620},

volume = {60},

year = {2010},

}

TY - JOUR

AU - Zhu, Fuhai

AU - Chen, Zhiqi

TI - Novikov superalgebras with $A_0=A_1A_1$

JO - Czechoslovak Mathematical Journal

PY - 2010

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 60

IS - 4

SP - 903

EP - 907

AB - Novikov superalgebras are related to quadratic conformal superalgebras which correspond to the Hamiltonian pairs and play a fundamental role in completely integrable systems. In this note we show that the Novikov superalgebras with $A_0=A_1A_1$ and $\dim A_1=2$ are of type $N$ and give a class of Novikov superalgebras of type $S$ with $A_0=A_1A_1$.

LA - eng

KW - Novikov algebra; Novikov superalgebra; type $N$; type $S$; Novikov algebra; Novikov superalgebra; type ; type

UR - http://eudml.org/doc/196620

ER -

## References

top- Balinskii, A. A., Novikov, S. P., Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras, Sov. Math. Dokl. 32 (1985), 228-231. (1985) Zbl0606.58018MR0802121
- Gel'fand, I. M., Dorfman, I. Ya., 10.1007/BF01078363, Funct. Anal. Appl. 13 (1980), 248-262. (1980) Zbl0437.58009DOI10.1007/BF01078363
- Gel'fand, I. M., Dorfman, I. Y., 10.1007/BF01086188, Funct. Anal. Appl. 14 (1981), 223-226. (1981) MR0583806DOI10.1007/BF01086188
- Gel'fand, I. M., Dorfman, I. Y., 10.1007/BF01089922, Funct. Anal. Appl. 15 (1982), 173-187. (1982) Zbl0487.58008MR0630337DOI10.1007/BF01089922
- Kac, V. G., Vertex Algebras for Beginners. University Lecture Series, 10, American Mathematical Society (AMS) Providence (1998). (1998) MR1651389
- Kang, Y. F., Chen, Z. Q., 10.1142/S1402925109000212, J. Nonlinear Math. Phys 16 (2009), 251-257. (2009) MR2572473DOI10.1142/S1402925109000212
- Xu, X. P., 10.1006/jabr.1999.8346, J. Algebra 231 (2000), 1-38. (2000) Zbl1001.17024MR1779590DOI10.1006/jabr.1999.8346
- Xu, X. P., Introduction to Vertex Operator Superalgebras and Their Modules, Kluwer Dordercht (1998). (1998) Zbl0929.17030MR1656671
- Xu, X. P., 10.1007/BF00750806, Lett. Math. Phys. 33 (1995), 1-6. (1995) Zbl0837.16034MR1315250DOI10.1007/BF00750806
- Xu, X. P., Hamiltonian superoperators, J. Phys A. Math. Gen. 28 (1995), 1681-1698. (1995) Zbl0852.58043MR1338053

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.