### 0-dialgebras with bar-unity and nonassociative Rota--Baxter algebras.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

We describe two constructions of a certain ${\mathbb{Z}}_{4}^{3}$-grading on the so-called Brown algebra (a simple structurable algebra of dimension $56$ and skew-dimension $1$) over an algebraically closed field of characteristic different from $2$. The Weyl group of this grading is computed. We also show how this grading gives rise to several interesting fine gradings on exceptional simple Lie algebras of types ${E}_{6}$, ${E}_{7}$ and ${E}_{8}$.

We construct a special class of fermionic Novikov superalgebras from linear functions. We show that they are Novikov superalgebras. Then we give a complete classification of them, among which there are some non-associative examples. This method leads to several new examples which have not been described in the literature.

In this paper we give a review on δ-structurable algebras. A connection between Malcev algebras and a generalization of δ-structurable algebras is also given.

Following a recent work [Bai C., Bellier O., Guo L., Ni X., Splitting of operations, Manin products, and Rota-Baxter operators, Int. Math. Res. Not. IMRN (in press), DOI: 10.1093/imrn/rnr266] we define what is a dendriform dior trialgebra corresponding to an arbitrary variety Var of binary algebras (associative, commutative, Poisson, etc.). We call such algebras di- or tri-Var-dendriform algebras, respectively. We prove in general that the operad governing the variety of di- or tri-Var-dendriform...

In Kepka T., Kinyon M.K., Phillips J.D., The structure of F-quasigroups, J. Algebra 317 (2007), 435–461, we showed that every F-quasigroup is linear over a special kind of Moufang loop called an NK-loop. Here we extend this relationship by showing an equivalence between the class of (pointed) F-quasigroups and the class corresponding to a certain notion of generalized module (with noncommutative, nonassociative addition) for an associative ring.

In Kepka T., Kinyon M.K., Phillips J.D., The structure of F-quasigroups, math.GR/0510298, we showed that every loop isotopic to an F-quasigroup is a Moufang loop. Here we characterize, via two simple identities, the class of F-quasigroups which are isotopic to groups. We call these quasigroups FG-quasigroups. We show that FG-quasigroups are linear over groups. We then use this fact to describe their structure. This gives us, for instance, a complete description of the simple FG-quasigroups. Finally,...

First, we provide an introduction to the theory and algorithms for noncommutative Gröbner bases for ideals in free associative algebras. Second, we explain how to construct universal associative envelopes for nonassociative structures defined by multilinear operations. Third, we extend the work of Elgendy (2012) for nonassociative structures on the 2-dimensional simple associative triple system to the 4- and 6-dimensional systems.

2010 Mathematics Subject Classification: 17A32, 17B63.Let V be a variety of Leibniz-Poisson algebras over an arbitrary field whose ideal of identities contains the identities {{x1,y1},{x2,y2},ј,{xm,ym}} = 0, {x1,y1}·{x2,y2}· ј ·{xm,ym} = 0 for some m. It is shown that the exponent of V exists and is an integer.