Noncooperative games with noncompact joint strategies sets: increasing best responses and approximation to equilibrium points
Rosa María Flores-Hernández; Raúl Montes-de-Oca
Kybernetika (2011)
- Volume: 47, Issue: 2, page 207-221
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topFlores-Hernández, Rosa María, and Montes-de-Oca, Raúl. "Noncooperative games with noncompact joint strategies sets: increasing best responses and approximation to equilibrium points." Kybernetika 47.2 (2011): 207-221. <http://eudml.org/doc/196627>.
@article{Flores2011,
abstract = {In this paper conditions proposed in Flores-Hernández and Montes-de-Oca [3] which permit to obtain monotone minimizers of unbounded optimization problems on Euclidean spaces are adapted in suitable versions to study noncooperative games on Euclidean spaces with noncompact sets of feasible joint strategies in order to obtain increasing optimal best responses for each player. Moreover, in this noncompact framework an algorithm to approximate the equilibrium points for noncooperative games is supplied.},
author = {Flores-Hernández, Rosa María, Montes-de-Oca, Raúl},
journal = {Kybernetika},
keywords = {monotone maximizer in an optimization problem; noncooperative game; supermodular game; increasing optimal best response for each player; equilibrium point; monotone maximizer in an optimization problem; noncooperative game; supermodular game; increasing optimal best response for each player; equilibrium point},
language = {eng},
number = {2},
pages = {207-221},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Noncooperative games with noncompact joint strategies sets: increasing best responses and approximation to equilibrium points},
url = {http://eudml.org/doc/196627},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Flores-Hernández, Rosa María
AU - Montes-de-Oca, Raúl
TI - Noncooperative games with noncompact joint strategies sets: increasing best responses and approximation to equilibrium points
JO - Kybernetika
PY - 2011
PB - Institute of Information Theory and Automation AS CR
VL - 47
IS - 2
SP - 207
EP - 221
AB - In this paper conditions proposed in Flores-Hernández and Montes-de-Oca [3] which permit to obtain monotone minimizers of unbounded optimization problems on Euclidean spaces are adapted in suitable versions to study noncooperative games on Euclidean spaces with noncompact sets of feasible joint strategies in order to obtain increasing optimal best responses for each player. Moreover, in this noncompact framework an algorithm to approximate the equilibrium points for noncooperative games is supplied.
LA - eng
KW - monotone maximizer in an optimization problem; noncooperative game; supermodular game; increasing optimal best response for each player; equilibrium point; monotone maximizer in an optimization problem; noncooperative game; supermodular game; increasing optimal best response for each player; equilibrium point
UR - http://eudml.org/doc/196627
ER -
References
top- Altman, E., Altman, Z., 10.1109/TAC.2003.811264, IEEE Trans. Automat. Control 48 (2003), 839–842. (2003) MR1980592DOI10.1109/TAC.2003.811264
- Burger, E., Introduction to the Theory of Games, Prentice Hall, Englewood Cliffs, N. J. 1963. (1963) Zbl0112.12502
- Flores-Hernández, R. M., Montes-de-Oca, R., Monotonicity of minimizers in optimization problems with applications to Markov control processes, Kybernetika 43 (2007), 347–368. (2007) Zbl1170.90513MR2362724
- Fudenberg, D., Tirole, J., Game Theory, The MIT Press, Cambridge 1991. (1991) MR1124618
- Milgrom, P., Roberts, J., 10.2307/2938316, Econometrica 58 (1990), 1255–1277. (1990) Zbl0728.90098MR1080810DOI10.2307/2938316
- Rieder, U., 10.1007/BF01168566, Manuscripta Math. 24 (1978), 115–131. (1978) Zbl0385.28005MR0493590DOI10.1007/BF01168566
- Sundaram, R. K., A First Course in Optimization Theory, Cambridge University Press, Cambridge 1996. (1996) Zbl0885.90106MR1402910
- Topkis, D. M., 10.1287/opre.26.2.305, Oper. Res. 26 (1978), 305–321. (1978) Zbl0379.90089MR0468177DOI10.1287/opre.26.2.305
- Topkis, D. M., 10.1137/0317054, SIAM J. Control Optim. 17 (1979), 773–787. (1979) Zbl0433.90091MR0548704DOI10.1137/0317054
- Topkis, D. M., Supermodularity and Complementarity, Princeton University Press, Princeton, N. J. 1998. (1998) MR1614637
- Vives, X., 10.1016/0304-4068(90)90005-T, J. Math. Econ. 19 (1990), 305–321. (1990) Zbl0708.90094MR1047174DOI10.1016/0304-4068(90)90005-T
- Yao, D. D., S-modular games with queueing applications, Queueing Syst. 21 (1995), 449–475. (1995) Zbl0858.90142MR1375684
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.