Linear maps that strongly preserve regular matrices over the Boolean algebra
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 1, page 113-125
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKang, Kyung-Tae, and Song, Seok-Zun. "Linear maps that strongly preserve regular matrices over the Boolean algebra." Czechoslovak Mathematical Journal 61.1 (2011): 113-125. <http://eudml.org/doc/196636>.
@article{Kang2011,
abstract = {The set of all $m\times n$ Boolean matrices is denoted by $\{\mathbb \{M\}\}_\{m,n\}$. We call a matrix $A\in \{\mathbb \{M\}\}_\{m,n\}$ regular if there is a matrix $G\in \{\mathbb \{M\}\}_\{n,m\}$ such that $AGA=A$. In this paper, we study the problem of characterizing linear operators on $\{\mathbb \{M\}\}_\{m,n\}$ that strongly preserve regular matrices. Consequently, we obtain that if $\min \lbrace m,n\rbrace \le 2$, then all operators on $\{\mathbb \{M\}\}_\{m,n\}$ strongly preserve regular matrices, and if $\min \lbrace m,n\rbrace \ge 3$, then an operator $T$ on $\{\mathbb \{M\}\}_\{m,n\}$ strongly preserves regular matrices if and only if there are invertible matrices $U$ and $V$ such that $T(X)=UXV$ for all $X\in \{\mathbb \{M\}\}_\{m,n\}$, or $m=n$ and $T(X)=UX^TV$ for all $X\in \{\mathbb \{M\}\}_\{n\}$.},
author = {Kang, Kyung-Tae, Song, Seok-Zun},
journal = {Czechoslovak Mathematical Journal},
keywords = {Boolean algebra; regular matrix; $(U,V)$-operator; Boolean algebra; regular matrix; -operator; regular matrix preservers; Boolean matrices; invertible matrices},
language = {eng},
number = {1},
pages = {113-125},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Linear maps that strongly preserve regular matrices over the Boolean algebra},
url = {http://eudml.org/doc/196636},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Kang, Kyung-Tae
AU - Song, Seok-Zun
TI - Linear maps that strongly preserve regular matrices over the Boolean algebra
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 1
SP - 113
EP - 125
AB - The set of all $m\times n$ Boolean matrices is denoted by ${\mathbb {M}}_{m,n}$. We call a matrix $A\in {\mathbb {M}}_{m,n}$ regular if there is a matrix $G\in {\mathbb {M}}_{n,m}$ such that $AGA=A$. In this paper, we study the problem of characterizing linear operators on ${\mathbb {M}}_{m,n}$ that strongly preserve regular matrices. Consequently, we obtain that if $\min \lbrace m,n\rbrace \le 2$, then all operators on ${\mathbb {M}}_{m,n}$ strongly preserve regular matrices, and if $\min \lbrace m,n\rbrace \ge 3$, then an operator $T$ on ${\mathbb {M}}_{m,n}$ strongly preserves regular matrices if and only if there are invertible matrices $U$ and $V$ such that $T(X)=UXV$ for all $X\in {\mathbb {M}}_{m,n}$, or $m=n$ and $T(X)=UX^TV$ for all $X\in {\mathbb {M}}_{n}$.
LA - eng
KW - Boolean algebra; regular matrix; $(U,V)$-operator; Boolean algebra; regular matrix; -operator; regular matrix preservers; Boolean matrices; invertible matrices
UR - http://eudml.org/doc/196636
ER -
References
top- Beasley, L. B., Pullman, N. J., 10.1016/0024-3795(84)90158-7, Linear Algebra Appl. 59 (1984), 55-77. (1984) Zbl0536.20044MR0743045DOI10.1016/0024-3795(84)90158-7
- Denes, J., Transformations and transformation semigroups, Seminar Report, University of Wisconsin, Madison, Wisconsin (1976). (1976)
- Kim, K. H., Boolean Matrix Theory and Applications, Pure and Applied Mathematics, Vol. 70, Marcel Dekker, New York (1982). (1982) Zbl0495.15003MR0655414
- Luce, R. D., 10.1090/S0002-9939-1952-0050559-1, Proc. Amer. Math. Soc. 3 (1952), 382-388. (1952) Zbl0048.02302MR0050559DOI10.1090/S0002-9939-1952-0050559-1
- Moore, E. H., General Analysis, Part I, Mem. of Amer. Phil. Soc. 1 (1935). (1935)
- Plemmons, R. J., 10.1137/0120046, SIAM J. Appl. Math. 20 (1971), 426-433. (1971) Zbl0227.05013MR0286806DOI10.1137/0120046
- Rao, P. S. S. N. V. P., Rao, K. P. S. B., 10.1016/0024-3795(75)90054-3, Linear Algebra Appl. 11 (1975), 135-153. (1975) Zbl0322.15011MR0376706DOI10.1016/0024-3795(75)90054-3
- Rutherford, D. E., Inverses of Boolean matrices, Proc. Glasgow Math. Assoc. 6 (1963), 49-53. (1963) Zbl0114.01701MR0148585
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.