Page 1 Next

Displaying 1 – 20 of 252

Showing per page

A Hadamard product involving inverse-positive matrices

Gassó Maria T., Torregrosa Juan R., Abad Manuel (2015)

Special Matrices

In this paperwe study the Hadamard product of inverse-positive matrices.We observe that this class of matrices is not closed under the Hadamard product, but we show that for a particular sign pattern of the inverse-positive matrices A and B, the Hadamard product A ◦ B−1 is again an inverse-positive matrix.

A new proof of the Millinen-Akdeniz theorem.

Heinz Neudecker (1989)

Qüestiió

A simple proof is given for a theorem by Milliken and Akdeniz (1977) about the difference of the Moore-Penrose inverses of two positive semi-definite matrices.

A new rank formula for idempotent matrices with applications

Yong Ge Tian, George P. H. Styan (2002)

Commentationes Mathematicae Universitatis Carolinae

It is shown that rank ( P * A Q ) = rank ( P * A ) + rank ( A Q ) - rank ( A ) , where A is idempotent, [ P , Q ] has full row rank and P * Q = 0 . Some applications of the rank formula to generalized inverses of matrices are also presented.

A note on ultrametric matrices

Xiao-Dong Zhang (2004)

Czechoslovak Mathematical Journal

It is proved in this paper that special generalized ultrametric and special 𝒰 matrices are, in a sense, extremal matrices in the boundary of the set of generalized ultrametric and 𝒰 matrices, respectively. Moreover, we present a new class of inverse M -matrices which generalizes the class of 𝒰 matrices.

Currently displaying 1 – 20 of 252

Page 1 Next