On the convergence of the ensemble Kalman filter
Jan Mandel; Loren Cobb; Jonathan D. Beezley
Applications of Mathematics (2011)
- Volume: 56, Issue: 6, page 533-541
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topMandel, Jan, Cobb, Loren, and Beezley, Jonathan D.. "On the convergence of the ensemble Kalman filter." Applications of Mathematics 56.6 (2011): 533-541. <http://eudml.org/doc/196641>.
@article{Mandel2011,
abstract = {Convergence of the ensemble Kalman filter in the limit for large ensembles to the Kalman filter is proved. In each step of the filter, convergence of the ensemble sample covariance follows from a weak law of large numbers for exchangeable random variables, the continuous mapping theorem gives convergence in probability of the ensemble members, and $L^\{p\}$ bounds on the ensemble then give $L^\{p\}$ convergence.},
author = {Mandel, Jan, Cobb, Loren, Beezley, Jonathan D.},
journal = {Applications of Mathematics},
keywords = {data assimilation; ensemble; asymptotics; convergence; filtering; exchangeable random variables; data assimilation; asymptotics; exchangeable random variables},
language = {eng},
number = {6},
pages = {533-541},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the convergence of the ensemble Kalman filter},
url = {http://eudml.org/doc/196641},
volume = {56},
year = {2011},
}
TY - JOUR
AU - Mandel, Jan
AU - Cobb, Loren
AU - Beezley, Jonathan D.
TI - On the convergence of the ensemble Kalman filter
JO - Applications of Mathematics
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 6
SP - 533
EP - 541
AB - Convergence of the ensemble Kalman filter in the limit for large ensembles to the Kalman filter is proved. In each step of the filter, convergence of the ensemble sample covariance follows from a weak law of large numbers for exchangeable random variables, the continuous mapping theorem gives convergence in probability of the ensemble members, and $L^{p}$ bounds on the ensemble then give $L^{p}$ convergence.
LA - eng
KW - data assimilation; ensemble; asymptotics; convergence; filtering; exchangeable random variables; data assimilation; asymptotics; exchangeable random variables
UR - http://eudml.org/doc/196641
ER -
References
top- Anderson, B. D. O., Moore, J. B., Optimal Filtering, Prentice-Hall Englewood Cliffs (1979). (1979) Zbl0688.93058
- Anderson, J. L., 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2, Monthly Weather Review 129 (1999), 2884-2903. (1999) DOI10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
- Beezley, J. D., High-dimensional data assimilation and morphing ensemble Kalman filters with applications in wildfire modeling, PhD. Thesis Department of Mathematical and Statistical Sciences University of Colorado Denver (2009),http://math.cudenver.edu/ jbeezley/jbeezley_thesis.pdf. (2009) MR2713197
- Billingsley, P., Probability and Measure, 3rd edition, John Wiley & Sons Inc. New York (1995). (1995) MR1324786
- Burgers, G., Leeuwen, P. J. van, Evensen, G., 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2, Monthly Weather Review 126 (1998), 1719-1724. (1998) DOI10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
- Butala, M. D., Frazin, R. A., Chen, Y., Kamalabadi, F., 10.1109/TIP.2009.2017996, IEEE Trans. Image Proces. 18 (2009), 1573-1587. (2009) MR2751057DOI10.1109/TIP.2009.2017996
- Evensen, G., Data Assimilation: The Ensemble Kalman Filter, Springer Berlin (2007). (2007) Zbl1157.86001MR2555209
- Frazin, R. A., Butala, M. D., Kemball, A., Kamalabadi, F., 10.1086/499431, Astrophys. J. 635 (2005), L197--L200. (2005) DOI10.1086/499431
- Furrer, R., Bengtsson, T., 10.1016/j.jmva.2006.08.003, J. Multivariate Anal. 98 (2007), 227-255. (2007) Zbl1105.62091MR2301751DOI10.1016/j.jmva.2006.08.003
- Kalnay, E., Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press Cambridge (2003). (2003)
- Gland, F. Le, Monbet, V., Tran, V.-D., Large Sample Asymptotics for the Ensemble Kalman Filter. Research Report RR-7014, INRIA, August 2009, http://hal.inria.fr/inria-00409060/en/.
- Li, J., Xiu, D., 10.1016/j.cma.2008.03.022, Comput. Methods Appl. Mech. Eng. 197 (2008), 3574-3583. (2008) Zbl1195.93137MR2449176DOI10.1016/j.cma.2008.03.022
- Mandel, J., Beezley, J. D., 10.1007/978-3-642-01973-9_53, Lecture Notes in Computer Science, Vol. 5545 G. Allen, J. Nabrzyski, E. Seidel, G. D. van Albada, J. Dongarra, P. M. A. Sloot Springer (2009), 470-478. (2009) MR2572378DOI10.1007/978-3-642-01973-9_53
- Mandel, J., Cobb, L., Beezley, J. D., On the convergence of the ensemble Kalman filter, University of Colorado Denver CCM Report 278, January 2009 http://www.arXiv.org/abs/0901.2951.
- Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M., Whitaker, J. S., 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2, Monthly Weather Review 131 (2003), 1485-1490. (2003) DOI10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2
- Vaart, A. W. Van der, Asymptotic Statistics, Cambridge University Press Cambridge (2000). (2000)
- Vodacek, A., Li, Y., Garrett, A. J., Remote sensing data assimilation in environmental models, In: AIPR '08: Proceedings of the 2008 37th IEEE Applied Imagery Pattern Recognition Workshop IEEE Computer Society Washington (2008), 1-5. (2008)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.