Solvability of a higher-order multi-point boundary value problem at resonance

Xiaojie Lin; Qin Zhang; Zengji Du

Applications of Mathematics (2011)

  • Volume: 56, Issue: 6, page 557-575
  • ISSN: 0862-7940

Abstract

top
Based on the coincidence degree theory of Mawhin, we get a new general existence result for the following higher-order multi-point boundary value problem at resonance x ( n ) ( t ) = f ( t , x ( t ) , x ' ( t ) , , x ( n - 1 ) ( t ) ) , t ( 0 , 1 ) , x ( 0 ) = i = 1 m α i x ( ξ i ) , x ' ( 0 ) = = x ( n - 2 ) ( 0 ) = 0 , x ( n - 1 ) ( 1 ) = j = 1 l β j x ( n - 1 ) ( η j ) , where f : [ 0 , 1 ] × n is a Carathéodory function, 0 < ξ 1 < ξ 2 < < ξ m < 1 , α i , i = 1 , 2 , , m , m 2 and 0 < η 1 < < η l < 1 , β j , j = 1 , , l , l 1 . In this paper, two of the boundary value conditions are responsible for resonance.

How to cite

top

Lin, Xiaojie, Zhang, Qin, and Du, Zengji. "Solvability of a higher-order multi-point boundary value problem at resonance." Applications of Mathematics 56.6 (2011): 557-575. <http://eudml.org/doc/196674>.

@article{Lin2011,
abstract = {Based on the coincidence degree theory of Mawhin, we get a new general existence result for the following higher-order multi-point boundary value problem at resonance \[ \{ x^\{(n)\}(t)=f(t, x(t), x^\{\prime \}(t),\cdots , x^\{(n-1)\}(t)),\quad t\in (0,1),\cr x(0)=\sum \_\{i=1\}^\{m\}\alpha \_\{i\}x(\xi \_\{i\}),\quad x^\{\prime \}(0)=\cdots =x^\{(n-2)\}(0)=0,\quad x^\{(n-1)\}(1)=\sum \_\{j=1\}^\{l\}\beta \_\{j\}x^\{(n-1)\}(\eta \_\{j\}),\cr \} \] where $f\colon [0, 1]\times \mathbb \{R\}^n\rightarrow \mathbb \{R\}$ is a Carathéodory function, $0<\xi _\{1\}<\xi _\{2\}<\cdots <\xi _\{m\}<1$, $\alpha _\{i\}\in \mathbb \{R\}$, $i=1,2,\cdots , m$, $m\ge 2$ and $0<\eta _\{1\}<\cdots <\eta _\{l\}<1$, $\beta _\{j\}\in \mathbb \{R\}$, $j=1,\cdots , l$, $l\ge 1$. In this paper, two of the boundary value conditions are responsible for resonance.},
author = {Lin, Xiaojie, Zhang, Qin, Du, Zengji},
journal = {Applications of Mathematics},
keywords = {multi-point boundary value problem; coincidence degree theory; resonance; higher-order ODE; degree arguments; multi-point BVP; higher-order ODE; resonance; degree arguments},
language = {eng},
number = {6},
pages = {557-575},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solvability of a higher-order multi-point boundary value problem at resonance},
url = {http://eudml.org/doc/196674},
volume = {56},
year = {2011},
}

TY - JOUR
AU - Lin, Xiaojie
AU - Zhang, Qin
AU - Du, Zengji
TI - Solvability of a higher-order multi-point boundary value problem at resonance
JO - Applications of Mathematics
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 6
SP - 557
EP - 575
AB - Based on the coincidence degree theory of Mawhin, we get a new general existence result for the following higher-order multi-point boundary value problem at resonance \[ { x^{(n)}(t)=f(t, x(t), x^{\prime }(t),\cdots , x^{(n-1)}(t)),\quad t\in (0,1),\cr x(0)=\sum _{i=1}^{m}\alpha _{i}x(\xi _{i}),\quad x^{\prime }(0)=\cdots =x^{(n-2)}(0)=0,\quad x^{(n-1)}(1)=\sum _{j=1}^{l}\beta _{j}x^{(n-1)}(\eta _{j}),\cr } \] where $f\colon [0, 1]\times \mathbb {R}^n\rightarrow \mathbb {R}$ is a Carathéodory function, $0<\xi _{1}<\xi _{2}<\cdots <\xi _{m}<1$, $\alpha _{i}\in \mathbb {R}$, $i=1,2,\cdots , m$, $m\ge 2$ and $0<\eta _{1}<\cdots <\eta _{l}<1$, $\beta _{j}\in \mathbb {R}$, $j=1,\cdots , l$, $l\ge 1$. In this paper, two of the boundary value conditions are responsible for resonance.
LA - eng
KW - multi-point boundary value problem; coincidence degree theory; resonance; higher-order ODE; degree arguments; multi-point BVP; higher-order ODE; resonance; degree arguments
UR - http://eudml.org/doc/196674
ER -

References

top
  1. Bai, Z., Li, W., Ge, W., 10.1016/j.na.2004.10.013, Nonlinear Anal., Theory Methods Appl. 60 (2005), 1151-1162. (2005) Zbl1070.34026MR2115118DOI10.1016/j.na.2004.10.013
  2. Du, Z., Lin, X., Ge, W., 10.1016/j.cam.2004.08.003, J. Comput. Appl. Math. 177 (2005), 55-65. (2005) Zbl1059.34010MR2118659DOI10.1016/j.cam.2004.08.003
  3. Feng, W., Webb, J. R. L., 10.1016/S0362-546X(96)00118-6, Nonlinear Anal., Theory Methods Appl. 30 (1997), 3227-3238. (1997) Zbl0891.34019MR1603039DOI10.1016/S0362-546X(96)00118-6
  4. Gupta, C. P., 10.1016/0362-546X(94)00204-U, Nonlinear Anal., Theory Methods Appl. 24 (1995), 1483-1489. (1995) Zbl0839.34027MR1327929DOI10.1016/0362-546X(94)00204-U
  5. Kosmatov, N., 10.1016/j.na.2005.09.042, Nonlinear Anal., Theory Methods Appl. 65 (2006), 622-633. (2006) Zbl1121.34023MR2231078DOI10.1016/j.na.2005.09.042
  6. Liu, B., Yu, J., 10.1016/S0096-3003(01)00036-4, Appl. Math. Comput. 129 (2002), 119-143. (2002) Zbl1054.34033MR1897323DOI10.1016/S0096-3003(01)00036-4
  7. Liu, B., Zhao, Z., 10.1016/j.na.2006.09.032, Nonlinear Anal., Theory Methods Appl. 67 (2007), 2680-2689. (2007) Zbl1127.34006MR2345756DOI10.1016/j.na.2006.09.032
  8. Lu, S., Ge, W., 10.1016/S0022-247X(03)00567-5, J. Math. Anal. Appl. 287 (2003), 522-539. (2003) Zbl1046.34029MR2024338DOI10.1016/S0022-247X(03)00567-5
  9. Mawhin, J., Topological degree methods in nonlinear boundary value problems. Regional Conference Series in Mathematics, No. 40, American Mathematical Society (AMS) Providence (1979). (1979) MR0525202
  10. Meng, F., Du, Z., 10.1016/j.amc.2008.11.026, Appl. Math. Comput. 208 (2009), 23-30. (2009) Zbl1168.34310MR2490766DOI10.1016/j.amc.2008.11.026
  11. Xue, C., Du, Z., Ge, W., 10.1007/BF02936051, J. Appl. Math. Comput. 17 (2005), 229-244. (2005) Zbl1070.34031MR2108802DOI10.1007/BF02936051
  12. Zhang, X., Feng, M., Ge, W., 10.1016/j.jmaa.2008.11.082, J. Math. Anal. Appl. 353 (2009), 311-319. (2009) Zbl1180.34016MR2508869DOI10.1016/j.jmaa.2008.11.082

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.