Solvability of a higher-order multi-point boundary value problem at resonance
Xiaojie Lin; Qin Zhang; Zengji Du
Applications of Mathematics (2011)
- Volume: 56, Issue: 6, page 557-575
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLin, Xiaojie, Zhang, Qin, and Du, Zengji. "Solvability of a higher-order multi-point boundary value problem at resonance." Applications of Mathematics 56.6 (2011): 557-575. <http://eudml.org/doc/196674>.
@article{Lin2011,
abstract = {Based on the coincidence degree theory of Mawhin, we get a new general existence result for the following higher-order multi-point boundary value problem at resonance \[ \{ x^\{(n)\}(t)=f(t, x(t), x^\{\prime \}(t),\cdots , x^\{(n-1)\}(t)),\quad t\in (0,1),\cr x(0)=\sum \_\{i=1\}^\{m\}\alpha \_\{i\}x(\xi \_\{i\}),\quad x^\{\prime \}(0)=\cdots =x^\{(n-2)\}(0)=0,\quad x^\{(n-1)\}(1)=\sum \_\{j=1\}^\{l\}\beta \_\{j\}x^\{(n-1)\}(\eta \_\{j\}),\cr \} \]
where $f\colon [0, 1]\times \mathbb \{R\}^n\rightarrow \mathbb \{R\}$ is a Carathéodory function, $0<\xi _\{1\}<\xi _\{2\}<\cdots <\xi _\{m\}<1$, $\alpha _\{i\}\in \mathbb \{R\}$, $i=1,2,\cdots , m$, $m\ge 2$ and $0<\eta _\{1\}<\cdots <\eta _\{l\}<1$, $\beta _\{j\}\in \mathbb \{R\}$, $j=1,\cdots , l$, $l\ge 1$. In this paper, two of the boundary value conditions are responsible for resonance.},
author = {Lin, Xiaojie, Zhang, Qin, Du, Zengji},
journal = {Applications of Mathematics},
keywords = {multi-point boundary value problem; coincidence degree theory; resonance; higher-order ODE; degree arguments; multi-point BVP; higher-order ODE; resonance; degree arguments},
language = {eng},
number = {6},
pages = {557-575},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solvability of a higher-order multi-point boundary value problem at resonance},
url = {http://eudml.org/doc/196674},
volume = {56},
year = {2011},
}
TY - JOUR
AU - Lin, Xiaojie
AU - Zhang, Qin
AU - Du, Zengji
TI - Solvability of a higher-order multi-point boundary value problem at resonance
JO - Applications of Mathematics
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 6
SP - 557
EP - 575
AB - Based on the coincidence degree theory of Mawhin, we get a new general existence result for the following higher-order multi-point boundary value problem at resonance \[ { x^{(n)}(t)=f(t, x(t), x^{\prime }(t),\cdots , x^{(n-1)}(t)),\quad t\in (0,1),\cr x(0)=\sum _{i=1}^{m}\alpha _{i}x(\xi _{i}),\quad x^{\prime }(0)=\cdots =x^{(n-2)}(0)=0,\quad x^{(n-1)}(1)=\sum _{j=1}^{l}\beta _{j}x^{(n-1)}(\eta _{j}),\cr } \]
where $f\colon [0, 1]\times \mathbb {R}^n\rightarrow \mathbb {R}$ is a Carathéodory function, $0<\xi _{1}<\xi _{2}<\cdots <\xi _{m}<1$, $\alpha _{i}\in \mathbb {R}$, $i=1,2,\cdots , m$, $m\ge 2$ and $0<\eta _{1}<\cdots <\eta _{l}<1$, $\beta _{j}\in \mathbb {R}$, $j=1,\cdots , l$, $l\ge 1$. In this paper, two of the boundary value conditions are responsible for resonance.
LA - eng
KW - multi-point boundary value problem; coincidence degree theory; resonance; higher-order ODE; degree arguments; multi-point BVP; higher-order ODE; resonance; degree arguments
UR - http://eudml.org/doc/196674
ER -
References
top- Bai, Z., Li, W., Ge, W., 10.1016/j.na.2004.10.013, Nonlinear Anal., Theory Methods Appl. 60 (2005), 1151-1162. (2005) Zbl1070.34026MR2115118DOI10.1016/j.na.2004.10.013
- Du, Z., Lin, X., Ge, W., 10.1016/j.cam.2004.08.003, J. Comput. Appl. Math. 177 (2005), 55-65. (2005) Zbl1059.34010MR2118659DOI10.1016/j.cam.2004.08.003
- Feng, W., Webb, J. R. L., 10.1016/S0362-546X(96)00118-6, Nonlinear Anal., Theory Methods Appl. 30 (1997), 3227-3238. (1997) Zbl0891.34019MR1603039DOI10.1016/S0362-546X(96)00118-6
- Gupta, C. P., 10.1016/0362-546X(94)00204-U, Nonlinear Anal., Theory Methods Appl. 24 (1995), 1483-1489. (1995) Zbl0839.34027MR1327929DOI10.1016/0362-546X(94)00204-U
- Kosmatov, N., 10.1016/j.na.2005.09.042, Nonlinear Anal., Theory Methods Appl. 65 (2006), 622-633. (2006) Zbl1121.34023MR2231078DOI10.1016/j.na.2005.09.042
- Liu, B., Yu, J., 10.1016/S0096-3003(01)00036-4, Appl. Math. Comput. 129 (2002), 119-143. (2002) Zbl1054.34033MR1897323DOI10.1016/S0096-3003(01)00036-4
- Liu, B., Zhao, Z., 10.1016/j.na.2006.09.032, Nonlinear Anal., Theory Methods Appl. 67 (2007), 2680-2689. (2007) Zbl1127.34006MR2345756DOI10.1016/j.na.2006.09.032
- Lu, S., Ge, W., 10.1016/S0022-247X(03)00567-5, J. Math. Anal. Appl. 287 (2003), 522-539. (2003) Zbl1046.34029MR2024338DOI10.1016/S0022-247X(03)00567-5
- Mawhin, J., Topological degree methods in nonlinear boundary value problems. Regional Conference Series in Mathematics, No. 40, American Mathematical Society (AMS) Providence (1979). (1979) MR0525202
- Meng, F., Du, Z., 10.1016/j.amc.2008.11.026, Appl. Math. Comput. 208 (2009), 23-30. (2009) Zbl1168.34310MR2490766DOI10.1016/j.amc.2008.11.026
- Xue, C., Du, Z., Ge, W., 10.1007/BF02936051, J. Appl. Math. Comput. 17 (2005), 229-244. (2005) Zbl1070.34031MR2108802DOI10.1007/BF02936051
- Zhang, X., Feng, M., Ge, W., 10.1016/j.jmaa.2008.11.082, J. Math. Anal. Appl. 353 (2009), 311-319. (2009) Zbl1180.34016MR2508869DOI10.1016/j.jmaa.2008.11.082
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.