Displaying similar documents to “Solvability of a higher-order multi-point boundary value problem at resonance”

Existence of positive solutions for singular four-point boundary value problem with a p -Laplacian

Chunmei Miao, Junfang Zhao, Weigao Ge (2009)

Czechoslovak Mathematical Journal

Similarity:

In this paper we deal with the four-point singular boundary value problem ( φ p ( u ' ( t ) ) ) ' + q ( t ) f ( t , u ( t ) , u ' ( t ) ) = 0 , t ( 0 , 1 ) , u ' ( 0 ) - α u ( ξ ) = 0 , u ' ( 1 ) + β u ( η ) = 0 , where φ p ( s ) = | s | p - 2 s , p > 1 , 0 < ξ < η < 1 , α , β > 0 , q C [ 0 , 1 ] , q ( t ) > 0 , t ( 0 , 1 ) , and f C ( [ 0 , 1 ] × ( 0 , + ) × , ( 0 , + ) ) may be singular at u = 0 . By using the well-known theory of the Leray-Schauder degree, sufficient conditions are given for the existence of positive solutions.

On solvability of nonlinear boundary value problems for the equation ( x ' + g ( t , x , x ' ) ) ' = f ( t , x , x ' ) with one-sided growth restrictions on f

Staněk, Svatoslav (2002)

Archivum Mathematicum

Similarity:

We consider boundary value problems for second order differential equations of the form ( x ' + g ( t , x , x ' ) ) ' = f ( t , x , x ' ) with the boundary conditions r ( x ( 0 ) , x ' ( 0 ) , x ( T ) ) + ϕ ( x ) = 0 , w ( x ( 0 ) , x ( T ) , x ' ( T ) ) + ψ ( x ) = 0 , where g , r , w are continuous functions, f satisfies the local Carathéodory conditions and ϕ , ψ are continuous and nondecreasing functionals. Existence results are proved by the method of lower and upper functions and applying the degree theory for α -condensing operators.

Existence of multiple positive solutions of n th -order m -point boundary value problems

Sihua Liang, Jihui Zhang (2010)

Mathematica Bohemica

Similarity:

The paper deals with the existence of multiple positive solutions for the boundary value problem ( ϕ ( p ( t ) u ( n - 1 ) ) ( t ) ) ' + a ( t ) f ( t , u ( t ) , u ' ( t ) , ... , u ( n - 2 ) ( t ) ) = 0 , 0 < t < 1 , u ( i ) ( 0 ) = 0 , i = 0 , 1 , ... , n - 3 , u ( n - 2 ) ( 0 ) = i = 1 m - 2 α i u ( n - 2 ) ( ξ i ) , u ( n - 1 ) ( 1 ) = 0 , where ϕ : is an increasing homeomorphism and a positive homomorphism with ϕ ( 0 ) = 0 . Using a fixed-point theorem for operators on a cone, we provide sufficient conditions for the existence of multiple positive solutions to the above boundary value problem.