Homogeneous Geodesics in 3-dimensional Homogeneous Affine Manifolds

Zdeněk Dušek; Oldřich Kowalski; Zdeněk Vlášek

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2011)

  • Volume: 50, Issue: 1, page 29-42
  • ISSN: 0231-9721

Abstract

top
For studying homogeneous geodesics in Riemannian and pseudo-Riemannian geometry (on reductive homogeneous spaces) there is a simple algebraic formula which works, at least potentially, in every given case. In the affine differential geometry, there is not such a universal formula. In the previous work, we proposed a simple method of investigation of homogeneous geodesics in homogeneous affine manifolds in dimension 2. In the present paper, we use this method on certain classes of homogeneous connections on the examples of 3-dimensional Lie groups.

How to cite

top

Dušek, Zdeněk, Kowalski, Oldřich, and Vlášek, Zdeněk. "Homogeneous Geodesics in 3-dimensional Homogeneous Affine Manifolds." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 50.1 (2011): 29-42. <http://eudml.org/doc/196677>.

@article{Dušek2011,
abstract = {For studying homogeneous geodesics in Riemannian and pseudo-Riemannian geometry (on reductive homogeneous spaces) there is a simple algebraic formula which works, at least potentially, in every given case. In the affine differential geometry, there is not such a universal formula. In the previous work, we proposed a simple method of investigation of homogeneous geodesics in homogeneous affine manifolds in dimension 2. In the present paper, we use this method on certain classes of homogeneous connections on the examples of 3-dimensional Lie groups.},
author = {Dušek, Zdeněk, Kowalski, Oldřich, Vlášek, Zdeněk},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {affine connection; affine Killing vector field; homogeneous manifold; homogeneous geodesic; affine connection; affine Killing vector field; homogeneous manifold; homogeneous geodesic},
language = {eng},
number = {1},
pages = {29-42},
publisher = {Palacký University Olomouc},
title = {Homogeneous Geodesics in 3-dimensional Homogeneous Affine Manifolds},
url = {http://eudml.org/doc/196677},
volume = {50},
year = {2011},
}

TY - JOUR
AU - Dušek, Zdeněk
AU - Kowalski, Oldřich
AU - Vlášek, Zdeněk
TI - Homogeneous Geodesics in 3-dimensional Homogeneous Affine Manifolds
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2011
PB - Palacký University Olomouc
VL - 50
IS - 1
SP - 29
EP - 42
AB - For studying homogeneous geodesics in Riemannian and pseudo-Riemannian geometry (on reductive homogeneous spaces) there is a simple algebraic formula which works, at least potentially, in every given case. In the affine differential geometry, there is not such a universal formula. In the previous work, we proposed a simple method of investigation of homogeneous geodesics in homogeneous affine manifolds in dimension 2. In the present paper, we use this method on certain classes of homogeneous connections on the examples of 3-dimensional Lie groups.
LA - eng
KW - affine connection; affine Killing vector field; homogeneous manifold; homogeneous geodesic; affine connection; affine Killing vector field; homogeneous manifold; homogeneous geodesic
UR - http://eudml.org/doc/196677
ER -

References

top
  1. Alexandroff, P. S., Hopf, H., Topologie, Band I, Springer, 1935. (1935) 
  2. Alekseevsky, D., Arvanitoyeorgos, A., 10.1090/S0002-9947-07-04277-8, Trans. Am. Math. Soc. 359, 8 (2007), 3769–3789 (electronic). (2007) Zbl1148.53038MR2302514DOI10.1090/S0002-9947-07-04277-8
  3. Arias-Marco, T., Kowalski, O., 10.1007/s00605-007-0494-0, Monaths. Math. 153 (2008), 1–18. (2008) Zbl1155.53009MR2366132DOI10.1007/s00605-007-0494-0
  4. Calvaruso, G., Kowalski, O., Marinosci, R.A., 10.1023/B:AMHU.0000004942.87374.0e, Acta Math. Hungarica 101, 4 (2003), 313–322. (2003) Zbl1057.53041MR2017938DOI10.1023/B:AMHU.0000004942.87374.0e
  5. Calvaruso, G., Marinosci, R. A., 10.1007/s00009-006-0091-9, Mediterr. J. Math. 3 (2006), 467–481. (2006) Zbl1150.53010MR2274738DOI10.1007/s00009-006-0091-9
  6. Dušek, Z., 10.1016/j.geomphys.2009.12.015, J. Geom. Phys. 60 (2010), 687–689. (2010) MR2608520DOI10.1016/j.geomphys.2009.12.015
  7. Dušek, Z., Kowalski, O., Geodesic graphs on the 13-dimensional group of Heisenberg type, Math. Nachr. 254-255 (2003), 87–96. (2003) Zbl1019.22004MR1983957
  8. Dušek, Z., Kowalski, O., Light-like homogeneous geodesics and the Geodesic Lemma for any signature, Publ. Math. Debrecen 71, 1-2 (2007), 245–252. (2007) Zbl1135.53316MR2340046
  9. Dušek, Z., Kowalski, O., 10.1016/j.geomphys.2007.04.005, Journal of Geometry and Physics 57 (2007), 2014–2023. (2007) Zbl1126.53026MR2348276DOI10.1016/j.geomphys.2007.04.005
  10. Dušek, Z., Kowalski, O., Nikčević, S. Ž., 10.1016/j.difgeo.2004.03.006, Differential Geom. Appl. 21 (2004), 65–78. (2004) Zbl1050.22011MR2067459DOI10.1016/j.difgeo.2004.03.006
  11. Dušek, Z., Kowalski, O., Vlášek, Z., 10.1007/s00025-009-0373-1, Result. Math. 54 (2009), 273–288. (2009) Zbl1184.53048MR2534447DOI10.1007/s00025-009-0373-1
  12. Figueroa-O’Farrill, J., Meessen, P., Philip, S., 10.1088/1126-6708/2005/05/050, J. High Energy Physics 05 (2005), 050–050. (2005) MR2155055DOI10.1088/1126-6708/2005/05/050
  13. Kobayashi, S., Nomizu, N., Foundations of differential geometry I, II, Wiley Classics Library, 1996. (1996) 
  14. Kowalski, O., Nikčević, S.Ž., 10.1007/s000130050032, Archiv der Math. 73 (1999), 223–234; Appendix: Archiv der Math. 79 (2002), 158–160. (1999) MR1705019DOI10.1007/s000130050032
  15. Kowalski, O., Nikčević, S.Ž., Vlášek, Z., Homogeneous geodesics in homogeneous Riemannian manifolds – Examples, Geometry and Topology of Submanifolds, World Sci. Publishing co., River Edge, NJ (2000), 104–112. (2000) MR1801906
  16. Kowalski, O., Opozda, B., Vlášek, Z., 10.1142/S0129167X03001971, International J.Math. 14, 6 (2003), 1–14. (2003) Zbl1061.53049MR1993797DOI10.1142/S0129167X03001971
  17. Kowalski, O., Opozda, B., Vlášek, Z., 10.2478/BF02475953, Central European J. Math. 2, 1 (2004), 87–102. (2004) MR2041671DOI10.2478/BF02475953
  18. Kowalski, O., Szenthe, J., 10.1023/A:1005287907806, Geom. Dedicata 81 (2000), 209–214; Erratum: Geom. Dedicata 84 (2001), 331–332. (2000) Zbl0980.53061MR1772203DOI10.1023/A:1005287907806
  19. Kowalski, O., Vanhecke, L., Riemannian manifolds with homogeneous geodesics, Boll. Un. Math. Ital. 5, B(7) (1991), 189–246. (1991) Zbl0731.53046MR1110676
  20. Kowalski, O., Vlášek, Z., Homogeneous Riemannian manifolds with only one homogeneous geodesic, Publ. Math. Debrecen 62, 3-4 (2003), 437–446. (2003) Zbl1060.53043MR2008107
  21. Kowalski, O., Vlášek, Z., On the moduli space of locally homogeneous affine connections in plane domains, Comment. Math. Univ. Carolinae 44, 2 (2003), 229–234. (2003) MR2026160
  22. Marinosci, R.A., Homogeneous geodesics in a three-dimensional Lie group, Comm. Math. Univ. Carolinae 43, 2 (2002), 261–270. (2002) Zbl1090.53038MR1922126
  23. Opozda, B., A classification of locally homogeneous connections on 2-dimensional manifolds, Differential Geometry and its Applications 21, 2 (2004), 173–198. (2004) Zbl1063.53024MR2073824
  24. Philip, S., 10.1016/j.geomphys.2005.08.002, J. Geom. Phys. 56 (2006), 1516–1533. (2006) Zbl1104.83020MR2240408DOI10.1016/j.geomphys.2005.08.002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.