Homogeneous Geodesics in 3-dimensional Homogeneous Affine Manifolds
Zdeněk Dušek; Oldřich Kowalski; Zdeněk Vlášek
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2011)
- Volume: 50, Issue: 1, page 29-42
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topDušek, Zdeněk, Kowalski, Oldřich, and Vlášek, Zdeněk. "Homogeneous Geodesics in 3-dimensional Homogeneous Affine Manifolds." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 50.1 (2011): 29-42. <http://eudml.org/doc/196677>.
@article{Dušek2011,
abstract = {For studying homogeneous geodesics in Riemannian and pseudo-Riemannian geometry (on reductive homogeneous spaces) there is a simple algebraic formula which works, at least potentially, in every given case. In the affine differential geometry, there is not such a universal formula. In the previous work, we proposed a simple method of investigation of homogeneous geodesics in homogeneous affine manifolds in dimension 2. In the present paper, we use this method on certain classes of homogeneous connections on the examples of 3-dimensional Lie groups.},
author = {Dušek, Zdeněk, Kowalski, Oldřich, Vlášek, Zdeněk},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {affine connection; affine Killing vector field; homogeneous manifold; homogeneous geodesic; affine connection; affine Killing vector field; homogeneous manifold; homogeneous geodesic},
language = {eng},
number = {1},
pages = {29-42},
publisher = {Palacký University Olomouc},
title = {Homogeneous Geodesics in 3-dimensional Homogeneous Affine Manifolds},
url = {http://eudml.org/doc/196677},
volume = {50},
year = {2011},
}
TY - JOUR
AU - Dušek, Zdeněk
AU - Kowalski, Oldřich
AU - Vlášek, Zdeněk
TI - Homogeneous Geodesics in 3-dimensional Homogeneous Affine Manifolds
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2011
PB - Palacký University Olomouc
VL - 50
IS - 1
SP - 29
EP - 42
AB - For studying homogeneous geodesics in Riemannian and pseudo-Riemannian geometry (on reductive homogeneous spaces) there is a simple algebraic formula which works, at least potentially, in every given case. In the affine differential geometry, there is not such a universal formula. In the previous work, we proposed a simple method of investigation of homogeneous geodesics in homogeneous affine manifolds in dimension 2. In the present paper, we use this method on certain classes of homogeneous connections on the examples of 3-dimensional Lie groups.
LA - eng
KW - affine connection; affine Killing vector field; homogeneous manifold; homogeneous geodesic; affine connection; affine Killing vector field; homogeneous manifold; homogeneous geodesic
UR - http://eudml.org/doc/196677
ER -
References
top- Alexandroff, P. S., Hopf, H., Topologie, Band I, Springer, 1935. (1935)
- Alekseevsky, D., Arvanitoyeorgos, A., 10.1090/S0002-9947-07-04277-8, Trans. Am. Math. Soc. 359, 8 (2007), 3769–3789 (electronic). (2007) Zbl1148.53038MR2302514DOI10.1090/S0002-9947-07-04277-8
- Arias-Marco, T., Kowalski, O., 10.1007/s00605-007-0494-0, Monaths. Math. 153 (2008), 1–18. (2008) Zbl1155.53009MR2366132DOI10.1007/s00605-007-0494-0
- Calvaruso, G., Kowalski, O., Marinosci, R.A., 10.1023/B:AMHU.0000004942.87374.0e, Acta Math. Hungarica 101, 4 (2003), 313–322. (2003) Zbl1057.53041MR2017938DOI10.1023/B:AMHU.0000004942.87374.0e
- Calvaruso, G., Marinosci, R. A., 10.1007/s00009-006-0091-9, Mediterr. J. Math. 3 (2006), 467–481. (2006) Zbl1150.53010MR2274738DOI10.1007/s00009-006-0091-9
- Dušek, Z., 10.1016/j.geomphys.2009.12.015, J. Geom. Phys. 60 (2010), 687–689. (2010) MR2608520DOI10.1016/j.geomphys.2009.12.015
- Dušek, Z., Kowalski, O., Geodesic graphs on the 13-dimensional group of Heisenberg type, Math. Nachr. 254-255 (2003), 87–96. (2003) Zbl1019.22004MR1983957
- Dušek, Z., Kowalski, O., Light-like homogeneous geodesics and the Geodesic Lemma for any signature, Publ. Math. Debrecen 71, 1-2 (2007), 245–252. (2007) Zbl1135.53316MR2340046
- Dušek, Z., Kowalski, O., 10.1016/j.geomphys.2007.04.005, Journal of Geometry and Physics 57 (2007), 2014–2023. (2007) Zbl1126.53026MR2348276DOI10.1016/j.geomphys.2007.04.005
- Dušek, Z., Kowalski, O., Nikčević, S. Ž., 10.1016/j.difgeo.2004.03.006, Differential Geom. Appl. 21 (2004), 65–78. (2004) Zbl1050.22011MR2067459DOI10.1016/j.difgeo.2004.03.006
- Dušek, Z., Kowalski, O., Vlášek, Z., 10.1007/s00025-009-0373-1, Result. Math. 54 (2009), 273–288. (2009) Zbl1184.53048MR2534447DOI10.1007/s00025-009-0373-1
- Figueroa-O’Farrill, J., Meessen, P., Philip, S., 10.1088/1126-6708/2005/05/050, J. High Energy Physics 05 (2005), 050–050. (2005) MR2155055DOI10.1088/1126-6708/2005/05/050
- Kobayashi, S., Nomizu, N., Foundations of differential geometry I, II, Wiley Classics Library, 1996. (1996)
- Kowalski, O., Nikčević, S.Ž., 10.1007/s000130050032, Archiv der Math. 73 (1999), 223–234; Appendix: Archiv der Math. 79 (2002), 158–160. (1999) MR1705019DOI10.1007/s000130050032
- Kowalski, O., Nikčević, S.Ž., Vlášek, Z., Homogeneous geodesics in homogeneous Riemannian manifolds – Examples, Geometry and Topology of Submanifolds, World Sci. Publishing co., River Edge, NJ (2000), 104–112. (2000) MR1801906
- Kowalski, O., Opozda, B., Vlášek, Z., 10.1142/S0129167X03001971, International J.Math. 14, 6 (2003), 1–14. (2003) Zbl1061.53049MR1993797DOI10.1142/S0129167X03001971
- Kowalski, O., Opozda, B., Vlášek, Z., 10.2478/BF02475953, Central European J. Math. 2, 1 (2004), 87–102. (2004) MR2041671DOI10.2478/BF02475953
- Kowalski, O., Szenthe, J., 10.1023/A:1005287907806, Geom. Dedicata 81 (2000), 209–214; Erratum: Geom. Dedicata 84 (2001), 331–332. (2000) Zbl0980.53061MR1772203DOI10.1023/A:1005287907806
- Kowalski, O., Vanhecke, L., Riemannian manifolds with homogeneous geodesics, Boll. Un. Math. Ital. 5, B(7) (1991), 189–246. (1991) Zbl0731.53046MR1110676
- Kowalski, O., Vlášek, Z., Homogeneous Riemannian manifolds with only one homogeneous geodesic, Publ. Math. Debrecen 62, 3-4 (2003), 437–446. (2003) Zbl1060.53043MR2008107
- Kowalski, O., Vlášek, Z., On the moduli space of locally homogeneous affine connections in plane domains, Comment. Math. Univ. Carolinae 44, 2 (2003), 229–234. (2003) MR2026160
- Marinosci, R.A., Homogeneous geodesics in a three-dimensional Lie group, Comm. Math. Univ. Carolinae 43, 2 (2002), 261–270. (2002) Zbl1090.53038MR1922126
- Opozda, B., A classification of locally homogeneous connections on 2-dimensional manifolds, Differential Geometry and its Applications 21, 2 (2004), 173–198. (2004) Zbl1063.53024MR2073824
- Philip, S., 10.1016/j.geomphys.2005.08.002, J. Geom. Phys. 56 (2006), 1516–1533. (2006) Zbl1104.83020MR2240408DOI10.1016/j.geomphys.2005.08.002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.