Bar-invariant bases of the quantum cluster algebra of type
Xueqing Chen; Ming Ding; Jie Sheng
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 4, page 1077-1090
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChen, Xueqing, Ding, Ming, and Sheng, Jie. "Bar-invariant bases of the quantum cluster algebra of type $A^{(2)}_2$." Czechoslovak Mathematical Journal 61.4 (2011): 1077-1090. <http://eudml.org/doc/196683>.
@article{Chen2011,
abstract = {We construct bar-invariant $\mathbb \{Z\}[q^\{\pm \{1\}/\{2\}\}]$-bases of the quantum cluster algebra of the valued quiver $A^\{(2)\}_2$, one of which coincides with the quantum analogue of the basis of the corresponding cluster algebra discussed in P. Sherman, A. Zelevinsky: Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Moscow Math. J., 4, 2004, 947–974.},
author = {Chen, Xueqing, Ding, Ming, Sheng, Jie},
journal = {Czechoslovak Mathematical Journal},
keywords = {quantum cluster algebra; $\mathbb \{Z\}[q^\{\pm \{1\}/\{2\}\}]$-basis; valued quiver; quantum cluster algebras; -bases; valued quivers},
language = {eng},
number = {4},
pages = {1077-1090},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bar-invariant bases of the quantum cluster algebra of type $A^\{(2)\}_2$},
url = {http://eudml.org/doc/196683},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Chen, Xueqing
AU - Ding, Ming
AU - Sheng, Jie
TI - Bar-invariant bases of the quantum cluster algebra of type $A^{(2)}_2$
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 4
SP - 1077
EP - 1090
AB - We construct bar-invariant $\mathbb {Z}[q^{\pm {1}/{2}}]$-bases of the quantum cluster algebra of the valued quiver $A^{(2)}_2$, one of which coincides with the quantum analogue of the basis of the corresponding cluster algebra discussed in P. Sherman, A. Zelevinsky: Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Moscow Math. J., 4, 2004, 947–974.
LA - eng
KW - quantum cluster algebra; $\mathbb {Z}[q^{\pm {1}/{2}}]$-basis; valued quiver; quantum cluster algebras; -bases; valued quivers
UR - http://eudml.org/doc/196683
ER -
References
top- Berenstein, A., Zelevinsky, A., 10.1016/j.aim.2004.08.003, Adv. Math. 195 (2005), 405-455. (2005) Zbl1124.20028MR2146350DOI10.1016/j.aim.2004.08.003
- Caldero, P., Chapoton, F., 10.4171/CMH/65, Comment. Math. Helv. 81 (2006), 595-616. (2006) Zbl1119.16013MR2250855DOI10.4171/CMH/65
- Caldero, P., Keller, B., 10.1007/s00222-008-0111-4, Invent. Math. 172 (2008), 169-211. (2008) Zbl1141.18012MR2385670DOI10.1007/s00222-008-0111-4
- Caldero, P., Zelevinsky, A., 10.17323/1609-4514-2006-6-3-411-429, Mosc. Math. J. 6 (2006), 411-429. (2006) Zbl1133.16012MR2274858DOI10.17323/1609-4514-2006-6-3-411-429
- Irelli, G. Cerulli, Canonically positive basis of cluster algebras of type , arXiv:0904.2543.
- Ding, M., Xiao, J., Xu, F., Integral bases of cluster algebras and representations of tame quivers, arXiv:0901.1937.
- Ding, M., Xu, F., Bases of the quantum cluster algebra of the Kronecker quiver, arXiv:1004.2349.
- Ding, M., Xu, F., Bases in quantum cluster algebra of finite and affine types, arXiv:1006.3928.
- Dlab, V., Ringel, C., Indecomposable representations of graphs and algebras, Mem. Am. Math. Soc. 173 (1976). (1976) Zbl0332.16015MR0447344
- Dupont, G., Generic variables in acyclic cluster algebras, arXiv:0811.2909. Zbl1209.13024MR2738377
- Fomin, S., Zelevinsky, A., 10.1090/S0894-0347-01-00385-X, J. Am. Math. Soc. 15 (2002), 497-529. (2002) Zbl1021.16017MR1887642DOI10.1090/S0894-0347-01-00385-X
- Fomin, S., Zelevinsky, A., 10.1007/s00222-003-0302-y, Invent. Math. 154 (2003), 63-121. (2003) Zbl1054.17024MR2004457DOI10.1007/s00222-003-0302-y
- Geiss, C., Leclerc, B., Schröer, J., Generic bases for cluster algebras and the Chamber Ansatz, arXiv:1004.2781. MR2833478
- Hubery, A., Acyclic cluster algebras via Ringel-Hall algebras, Preprint (2005). (2005) MR2844758
- Qin, F., Quantum cluster variables via Serre polynomials, arXiv:1004.4171.
- Rupel, D., On quantum analogue of the Caldero-Chapoton formula, arXiv:1003.2652.
- Sherman, P., Zelevinsky, A., 10.17323/1609-4514-2004-4-4-947-974, Moscow Math. J. 4 (2004), 947-974. (2004) Zbl1103.16018MR2124174DOI10.17323/1609-4514-2004-4-4-947-974
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.