Bar-invariant bases of the quantum cluster algebra of type A 2 ( 2 )

Xueqing Chen; Ming Ding; Jie Sheng

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 4, page 1077-1090
  • ISSN: 0011-4642

Abstract

top
We construct bar-invariant [ q ± 1 / 2 ] -bases of the quantum cluster algebra of the valued quiver A 2 ( 2 ) , one of which coincides with the quantum analogue of the basis of the corresponding cluster algebra discussed in P. Sherman, A. Zelevinsky: Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Moscow Math. J., 4, 2004, 947–974.

How to cite

top

Chen, Xueqing, Ding, Ming, and Sheng, Jie. "Bar-invariant bases of the quantum cluster algebra of type $A^{(2)}_2$." Czechoslovak Mathematical Journal 61.4 (2011): 1077-1090. <http://eudml.org/doc/196683>.

@article{Chen2011,
abstract = {We construct bar-invariant $\mathbb \{Z\}[q^\{\pm \{1\}/\{2\}\}]$-bases of the quantum cluster algebra of the valued quiver $A^\{(2)\}_2$, one of which coincides with the quantum analogue of the basis of the corresponding cluster algebra discussed in P. Sherman, A. Zelevinsky: Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Moscow Math. J., 4, 2004, 947–974.},
author = {Chen, Xueqing, Ding, Ming, Sheng, Jie},
journal = {Czechoslovak Mathematical Journal},
keywords = {quantum cluster algebra; $\mathbb \{Z\}[q^\{\pm \{1\}/\{2\}\}]$-basis; valued quiver; quantum cluster algebras; -bases; valued quivers},
language = {eng},
number = {4},
pages = {1077-1090},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bar-invariant bases of the quantum cluster algebra of type $A^\{(2)\}_2$},
url = {http://eudml.org/doc/196683},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Chen, Xueqing
AU - Ding, Ming
AU - Sheng, Jie
TI - Bar-invariant bases of the quantum cluster algebra of type $A^{(2)}_2$
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 4
SP - 1077
EP - 1090
AB - We construct bar-invariant $\mathbb {Z}[q^{\pm {1}/{2}}]$-bases of the quantum cluster algebra of the valued quiver $A^{(2)}_2$, one of which coincides with the quantum analogue of the basis of the corresponding cluster algebra discussed in P. Sherman, A. Zelevinsky: Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Moscow Math. J., 4, 2004, 947–974.
LA - eng
KW - quantum cluster algebra; $\mathbb {Z}[q^{\pm {1}/{2}}]$-basis; valued quiver; quantum cluster algebras; -bases; valued quivers
UR - http://eudml.org/doc/196683
ER -

References

top
  1. Berenstein, A., Zelevinsky, A., 10.1016/j.aim.2004.08.003, Adv. Math. 195 (2005), 405-455. (2005) Zbl1124.20028MR2146350DOI10.1016/j.aim.2004.08.003
  2. Caldero, P., Chapoton, F., 10.4171/CMH/65, Comment. Math. Helv. 81 (2006), 595-616. (2006) Zbl1119.16013MR2250855DOI10.4171/CMH/65
  3. Caldero, P., Keller, B., 10.1007/s00222-008-0111-4, Invent. Math. 172 (2008), 169-211. (2008) Zbl1141.18012MR2385670DOI10.1007/s00222-008-0111-4
  4. Caldero, P., Zelevinsky, A., 10.17323/1609-4514-2006-6-3-411-429, Mosc. Math. J. 6 (2006), 411-429. (2006) Zbl1133.16012MR2274858DOI10.17323/1609-4514-2006-6-3-411-429
  5. Irelli, G. Cerulli, Canonically positive basis of cluster algebras of type A ˜ 2 ( 1 ) , arXiv:0904.2543. 
  6. Ding, M., Xiao, J., Xu, F., Integral bases of cluster algebras and representations of tame quivers, arXiv:0901.1937. 
  7. Ding, M., Xu, F., Bases of the quantum cluster algebra of the Kronecker quiver, arXiv:1004.2349. 
  8. Ding, M., Xu, F., Bases in quantum cluster algebra of finite and affine types, arXiv:1006.3928. 
  9. Dlab, V., Ringel, C., Indecomposable representations of graphs and algebras, Mem. Am. Math. Soc. 173 (1976). (1976) Zbl0332.16015MR0447344
  10. Dupont, G., Generic variables in acyclic cluster algebras, arXiv:0811.2909. Zbl1209.13024MR2738377
  11. Fomin, S., Zelevinsky, A., 10.1090/S0894-0347-01-00385-X, J. Am. Math. Soc. 15 (2002), 497-529. (2002) Zbl1021.16017MR1887642DOI10.1090/S0894-0347-01-00385-X
  12. Fomin, S., Zelevinsky, A., 10.1007/s00222-003-0302-y, Invent. Math. 154 (2003), 63-121. (2003) Zbl1054.17024MR2004457DOI10.1007/s00222-003-0302-y
  13. Geiss, C., Leclerc, B., Schröer, J., Generic bases for cluster algebras and the Chamber Ansatz, arXiv:1004.2781. MR2833478
  14. Hubery, A., Acyclic cluster algebras via Ringel-Hall algebras, Preprint (2005). (2005) MR2844758
  15. Qin, F., Quantum cluster variables via Serre polynomials, arXiv:1004.4171. 
  16. Rupel, D., On quantum analogue of the Caldero-Chapoton formula, arXiv:1003.2652. 
  17. Sherman, P., Zelevinsky, A., 10.17323/1609-4514-2004-4-4-947-974, Moscow Math. J. 4 (2004), 947-974. (2004) Zbl1103.16018MR2124174DOI10.17323/1609-4514-2004-4-4-947-974

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.