On second–order Taylor expansion of critical values
Stephan Bütikofer; Diethard Klatte; Bernd Kummer
Kybernetika (2010)
- Volume: 46, Issue: 3, page 472-487
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBütikofer, Stephan, Klatte, Diethard, and Kummer, Bernd. "On second–order Taylor expansion of critical values." Kybernetika 46.3 (2010): 472-487. <http://eudml.org/doc/196690>.
@article{Bütikofer2010,
abstract = {Studying a critical value function $\varphi $ in parametric nonlinear programming, we recall conditions guaranteeing that $\varphi $ is a $C^\{1,1\}$ function and derive second order Taylor expansion formulas including second-order terms in the form of certain generalized derivatives of $D \varphi $. Several specializations and applications are discussed. These results are understood as supplements to the well–developed theory of first- and second-order directional differentiability of the optimal value function in parametric optimization.},
author = {Bütikofer, Stephan, Klatte, Diethard, Kummer, Bernd},
journal = {Kybernetika},
keywords = {Taylor expansion; parametric programs; critical value function; generalized derivatives; envelope theorems; Lipschitz stability; $C^\{1,1\}$ optimization; Taylor expansion; parametric programs; critical value function; generalized derivatives; envelope theorems; Lipschitz stability; optimization},
language = {eng},
number = {3},
pages = {472-487},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On second–order Taylor expansion of critical values},
url = {http://eudml.org/doc/196690},
volume = {46},
year = {2010},
}
TY - JOUR
AU - Bütikofer, Stephan
AU - Klatte, Diethard
AU - Kummer, Bernd
TI - On second–order Taylor expansion of critical values
JO - Kybernetika
PY - 2010
PB - Institute of Information Theory and Automation AS CR
VL - 46
IS - 3
SP - 472
EP - 487
AB - Studying a critical value function $\varphi $ in parametric nonlinear programming, we recall conditions guaranteeing that $\varphi $ is a $C^{1,1}$ function and derive second order Taylor expansion formulas including second-order terms in the form of certain generalized derivatives of $D \varphi $. Several specializations and applications are discussed. These results are understood as supplements to the well–developed theory of first- and second-order directional differentiability of the optimal value function in parametric optimization.
LA - eng
KW - Taylor expansion; parametric programs; critical value function; generalized derivatives; envelope theorems; Lipschitz stability; $C^{1,1}$ optimization; Taylor expansion; parametric programs; critical value function; generalized derivatives; envelope theorems; Lipschitz stability; optimization
UR - http://eudml.org/doc/196690
ER -
References
top- Bonnans, J. F., Shapiro, A., Perturbation Analysis of Optimization Problems, Springer, New York 2000. Zbl0966.49001MR1756264
- Bütikofer, St., 10.1007/s00186-008-0219-8, Math. Meth. Oper. Res. 68 (2008), 235–256. MR2443312DOI10.1007/s00186-008-0219-8
- Bütikofer, St., Klatte, D., A nonsmooth Newton method with path search and its use in solving programs and semi-infinite problems, Manuscript, February 2009.
- Clarke, F. H., Optimization and Nonsmooth Analysis, Wiley, New York 1983. Zbl0696.49002MR0709590
- Dempe, S., Foundations of Bilevel Programming, Kluwer, Dordrecht – Boston – London 2002. Zbl1038.90097MR1921449
- Demyanov, V. F., Malozemov, V. N., Introduction to Minimax, Wiley, New York 1974. MR0475823
- Facchinei, F., Pang, J.-S., Finite-Dimensional Variational Inequalities and Complementarity Problems, Volumes I, II, Springer, New York 2003.
- Fiacco, A. V., Introduction to Sensitivity and Stability Analysis, Academic Press, New York 1983. Zbl0543.90075MR0721641
- Gauvin, J., Dubeau, F., 10.1007/BFb0120984, Math. Program. Study 19 (1982), 101–119. Zbl0502.90072MR0669727DOI10.1007/BFb0120984
- Gauvin, J., Theory of Nonconvex Programming, Les Publications CRM, Montreal 1994.
- Golstein, E. G., Theory of Convex Programming, (Trans. Math. Monographs 36.) American Mathematical Society, Providence 1972. MR0359802
- Hiriart-Urruty, J.-B., Strodiot, J. J., Nguyen, V. Hien, 10.1007/BF01442169, Appl. Math. Optim. 11 (1984), 43–56. MR0726975DOI10.1007/BF01442169
- Jittorntrum, K., 10.1007/BFb0121215, Math. Program. Study 21 (1984), 127–138. Zbl0571.90080MR0751247DOI10.1007/BFb0121215
- Jongen, H. Th., Möbert, T., Tammer, K., 10.1287/moor.11.4.679, Math. Oper. Res. 11 (1986), 679–691. MR0865563DOI10.1287/moor.11.4.679
- Klatte, D., On quantitative stability for non-isolated minima, Control and Cybernetics 23 (1994), 183–200. Zbl0808.90120MR1284514
- Klatte, D., Kummer, B., 10.1023/A:1008648605071, Comput. Optim. Appl. 13 (1999), 61–85. Zbl1017.90104MR1704114DOI10.1023/A:1008648605071
- Klatte, D., Kummer, B., Nonsmooth Equations in Optimization – Regularity, Calculus, Methods and Applications, Kluwer, Dordrecht – Boston – London 2002. Zbl1173.49300MR1909427
- Klatte, D., Kummer, B., 10.1007/s10107-007-0174-9, Math. Program. Ser. B 117 (2009), 305–330. Zbl1158.49007MR2421309DOI10.1007/s10107-007-0174-9
- Klatte, D., Tammer, K., 10.1007/BF02055199, Ann. Oper. Res. 27 (1990), 285–307. Zbl0746.90070MR1088996DOI10.1007/BF02055199
- Kojima, M., Strongly stable stationary solutions in nonlinear programs, In: Analysis and Computation of Fixed Points (S. M. Robinson, ed.), Academic Press, New York 1980, pp. 93–138. Zbl0478.90062MR0592631
- Kummer, B., Newton’s method for non-differentiable functions, In: Advances in Math. Optimization (J. Guddat et al., eds.), Akademie Verlag, Berlin 1988, pp. 114–125. Zbl0662.65050
- Kummer, B., 10.1007/BF00941302, J. Optim. Theory Appl. 70 (1991), 559–580. MR1124778DOI10.1007/BF00941302
- Kummer, B., 10.1016/0022-247X(91)90264-Z, J. Math. Anal. Appl. 158 (1991), 35–46. MR1113397DOI10.1016/0022-247X(91)90264-Z
- Kummer, B., Newton’s method based on generalized derivatives for nonsmooth functions: convergence analysis, In: Advances in Optimization (W. Oettli and D. Pallaschke, eds.), Springer, Berlin 1992, pp. 171–194. Zbl0768.49012MR1229731
- Kummer, B., 10.7151/dmdico.1013, Discuss. Math. – Differential Inclusions 20 (2000), 209–244. Zbl1016.90058MR1815097DOI10.7151/dmdico.1013
- Kummer, B., 10.1016/j.jmaa.2009.04.060, J. Math. Anal. Appl. 358 (2009), 327–344. MR2532510DOI10.1016/j.jmaa.2009.04.060
- Minchenko, L. I., 10.1023/A:1023669004408, J. Math. Sci. 116 (2003), 93–138. MR1995436DOI10.1023/A:1023669004408
- Poliquin, R. A., Rockafellar, R. T., 10.1137/S1052623496309296, SIAM J. Optim. 8 (1998), 287-299. Zbl0918.49016MR1618790DOI10.1137/S1052623496309296
- Robinson, S. M., 10.1287/moor.5.1.43, Math. Oper. Res. 5 (1980), 43–62. Zbl0437.90094MR0561153DOI10.1287/moor.5.1.43
- Rockafellar, R. T., Wets, R. J.-B., Variational Analysis, Springer, Berlin 1998. Zbl0888.49001MR1491362
- Scholtes, S., Introduction to Piecewise Differentiable Equations, Preprint No. 53/1994. Institut für Statistik und Math. Wirtschaftstheorie, Universität Karlsruhe, 1994.
- Stein, O., Bi-level Strategies in Semi-infinite Programming, Kluwer, Dordrecht – Boston – London 2003. Zbl1103.90094MR2025879
- Sydsaeter, K., Hammond, P., Seierstad, A., Strom, A., Further Mathematics for Economic Analysis, Prentice Hall, 2005.
- Thibault, L., 10.1007/BF01789411, Ann. Mat. Pura Appl. 4 (1980), 157–192. MR0605208DOI10.1007/BF01789411
- Varian, H., Microeconomic Analysis, Third edition. W. W. Norton, New York 1992.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.