On second–order Taylor expansion of critical values

Stephan Bütikofer; Diethard Klatte; Bernd Kummer

Kybernetika (2010)

  • Volume: 46, Issue: 3, page 472-487
  • ISSN: 0023-5954

Abstract

top
Studying a critical value function ϕ in parametric nonlinear programming, we recall conditions guaranteeing that ϕ is a C 1 , 1 function and derive second order Taylor expansion formulas including second-order terms in the form of certain generalized derivatives of D ϕ . Several specializations and applications are discussed. These results are understood as supplements to the well–developed theory of first- and second-order directional differentiability of the optimal value function in parametric optimization.

How to cite

top

Bütikofer, Stephan, Klatte, Diethard, and Kummer, Bernd. "On second–order Taylor expansion of critical values." Kybernetika 46.3 (2010): 472-487. <http://eudml.org/doc/196690>.

@article{Bütikofer2010,
abstract = {Studying a critical value function $\varphi $ in parametric nonlinear programming, we recall conditions guaranteeing that $\varphi $ is a $C^\{1,1\}$ function and derive second order Taylor expansion formulas including second-order terms in the form of certain generalized derivatives of $D \varphi $. Several specializations and applications are discussed. These results are understood as supplements to the well–developed theory of first- and second-order directional differentiability of the optimal value function in parametric optimization.},
author = {Bütikofer, Stephan, Klatte, Diethard, Kummer, Bernd},
journal = {Kybernetika},
keywords = {Taylor expansion; parametric programs; critical value function; generalized derivatives; envelope theorems; Lipschitz stability; $C^\{1,1\}$ optimization; Taylor expansion; parametric programs; critical value function; generalized derivatives; envelope theorems; Lipschitz stability; optimization},
language = {eng},
number = {3},
pages = {472-487},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On second–order Taylor expansion of critical values},
url = {http://eudml.org/doc/196690},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Bütikofer, Stephan
AU - Klatte, Diethard
AU - Kummer, Bernd
TI - On second–order Taylor expansion of critical values
JO - Kybernetika
PY - 2010
PB - Institute of Information Theory and Automation AS CR
VL - 46
IS - 3
SP - 472
EP - 487
AB - Studying a critical value function $\varphi $ in parametric nonlinear programming, we recall conditions guaranteeing that $\varphi $ is a $C^{1,1}$ function and derive second order Taylor expansion formulas including second-order terms in the form of certain generalized derivatives of $D \varphi $. Several specializations and applications are discussed. These results are understood as supplements to the well–developed theory of first- and second-order directional differentiability of the optimal value function in parametric optimization.
LA - eng
KW - Taylor expansion; parametric programs; critical value function; generalized derivatives; envelope theorems; Lipschitz stability; $C^{1,1}$ optimization; Taylor expansion; parametric programs; critical value function; generalized derivatives; envelope theorems; Lipschitz stability; optimization
UR - http://eudml.org/doc/196690
ER -

References

top
  1. Bonnans, J. F., Shapiro, A., Perturbation Analysis of Optimization Problems, Springer, New York 2000. Zbl0966.49001MR1756264
  2. Bütikofer, St., 10.1007/s00186-008-0219-8, Math. Meth. Oper. Res. 68 (2008), 235–256. MR2443312DOI10.1007/s00186-008-0219-8
  3. Bütikofer, St., Klatte, D., A nonsmooth Newton method with path search and its use in solving C 1 , 1 programs and semi-infinite problems, Manuscript, February 2009. 
  4. Clarke, F. H., Optimization and Nonsmooth Analysis, Wiley, New York 1983. Zbl0696.49002MR0709590
  5. Dempe, S., Foundations of Bilevel Programming, Kluwer, Dordrecht – Boston – London 2002. Zbl1038.90097MR1921449
  6. Demyanov, V. F., Malozemov, V. N., Introduction to Minimax, Wiley, New York 1974. MR0475823
  7. Facchinei, F., Pang, J.-S., Finite-Dimensional Variational Inequalities and Complementarity Problems, Volumes I, II, Springer, New York 2003. 
  8. Fiacco, A. V., Introduction to Sensitivity and Stability Analysis, Academic Press, New York 1983. Zbl0543.90075MR0721641
  9. Gauvin, J., Dubeau, F., 10.1007/BFb0120984, Math. Program. Study 19 (1982), 101–119. Zbl0502.90072MR0669727DOI10.1007/BFb0120984
  10. Gauvin, J., Theory of Nonconvex Programming, Les Publications CRM, Montreal 1994. 
  11. Golstein, E. G., Theory of Convex Programming, (Trans. Math. Monographs 36.) American Mathematical Society, Providence 1972. MR0359802
  12. Hiriart-Urruty, J.-B., Strodiot, J. J., Nguyen, V. Hien, 10.1007/BF01442169, Appl. Math. Optim. 11 (1984), 43–56. MR0726975DOI10.1007/BF01442169
  13. Jittorntrum, K., 10.1007/BFb0121215, Math. Program. Study 21 (1984), 127–138. Zbl0571.90080MR0751247DOI10.1007/BFb0121215
  14. Jongen, H. Th., Möbert, T., Tammer, K., 10.1287/moor.11.4.679, Math. Oper. Res. 11 (1986), 679–691. MR0865563DOI10.1287/moor.11.4.679
  15. Klatte, D., On quantitative stability for non-isolated minima, Control and Cybernetics 23 (1994), 183–200. Zbl0808.90120MR1284514
  16. Klatte, D., Kummer, B., 10.1023/A:1008648605071, Comput. Optim. Appl. 13 (1999), 61–85. Zbl1017.90104MR1704114DOI10.1023/A:1008648605071
  17. Klatte, D., Kummer, B., Nonsmooth Equations in Optimization – Regularity, Calculus, Methods and Applications, Kluwer, Dordrecht – Boston – London 2002. Zbl1173.49300MR1909427
  18. Klatte, D., Kummer, B., 10.1007/s10107-007-0174-9, Math. Program. Ser. B 117 (2009), 305–330. Zbl1158.49007MR2421309DOI10.1007/s10107-007-0174-9
  19. Klatte, D., Tammer, K., 10.1007/BF02055199, Ann. Oper. Res. 27 (1990), 285–307. Zbl0746.90070MR1088996DOI10.1007/BF02055199
  20. Kojima, M., Strongly stable stationary solutions in nonlinear programs, In: Analysis and Computation of Fixed Points (S. M. Robinson, ed.), Academic Press, New York 1980, pp. 93–138. Zbl0478.90062MR0592631
  21. Kummer, B., Newton’s method for non-differentiable functions, In: Advances in Math. Optimization (J. Guddat et al., eds.), Akademie Verlag, Berlin 1988, pp. 114–125. Zbl0662.65050
  22. Kummer, B., 10.1007/BF00941302, J. Optim. Theory Appl. 70 (1991), 559–580. MR1124778DOI10.1007/BF00941302
  23. Kummer, B., 10.1016/0022-247X(91)90264-Z, J. Math. Anal. Appl. 158 (1991), 35–46. MR1113397DOI10.1016/0022-247X(91)90264-Z
  24. Kummer, B., Newton’s method based on generalized derivatives for nonsmooth functions: convergence analysis, In: Advances in Optimization (W. Oettli and D. Pallaschke, eds.), Springer, Berlin 1992, pp. 171–194. Zbl0768.49012MR1229731
  25. Kummer, B., 10.7151/dmdico.1013, Discuss. Math. – Differential Inclusions 20 (2000), 209–244. Zbl1016.90058MR1815097DOI10.7151/dmdico.1013
  26. Kummer, B., 10.1016/j.jmaa.2009.04.060, J. Math. Anal. Appl. 358 (2009), 327–344. MR2532510DOI10.1016/j.jmaa.2009.04.060
  27. Minchenko, L. I., 10.1023/A:1023669004408, J. Math. Sci. 116 (2003), 93–138. MR1995436DOI10.1023/A:1023669004408
  28. Poliquin, R. A., Rockafellar, R. T., 10.1137/S1052623496309296, SIAM J. Optim. 8 (1998), 287-299. Zbl0918.49016MR1618790DOI10.1137/S1052623496309296
  29. Robinson, S. M., 10.1287/moor.5.1.43, Math. Oper. Res. 5 (1980), 43–62. Zbl0437.90094MR0561153DOI10.1287/moor.5.1.43
  30. Rockafellar, R. T., Wets, R. J.-B., Variational Analysis, Springer, Berlin 1998. Zbl0888.49001MR1491362
  31. Scholtes, S., Introduction to Piecewise Differentiable Equations, Preprint No. 53/1994. Institut für Statistik und Math. Wirtschaftstheorie, Universität Karlsruhe, 1994. 
  32. Stein, O., Bi-level Strategies in Semi-infinite Programming, Kluwer, Dordrecht – Boston – London 2003. Zbl1103.90094MR2025879
  33. Sydsaeter, K., Hammond, P., Seierstad, A., Strom, A., Further Mathematics for Economic Analysis, Prentice Hall, 2005. 
  34. Thibault, L., 10.1007/BF01789411, Ann. Mat. Pura Appl. 4 (1980), 157–192. MR0605208DOI10.1007/BF01789411
  35. Varian, H., Microeconomic Analysis, Third edition. W. W. Norton, New York 1992. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.