On symmetrization of jets

Włodzimierz M. Mikulski

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 1, page 157-168
  • ISSN: 0011-4642

Abstract

top
Let F = F ( A , H , t ) and F 1 = F ( A 1 , H 1 , t 1 ) be fiber product preserving bundle functors on the category ℱℳ m of fibred manifolds Y with m -dimensional bases and fibred maps covering local diffeomorphisms. We define a quasi-morphism ( A , H , t ) ( A 1 , H 1 , t 1 ) to be a G L ( m ) -invariant algebra homomorphism ν : A A 1 with t 1 = ν t . The main result is that there exists an ℱℳ m -natural transformation F Y F 1 Y depending on a classical linear connection on the base of Y if and only if there exists a quasi-morphism ( A , H , t ) ( A 1 , H 1 , t 1 ) . As applications, we study existence problems of symmetrization (holonomization) of higher order jets and of holonomic prolongation of general connections.

How to cite

top

Mikulski, Włodzimierz M.. "On symmetrization of jets." Czechoslovak Mathematical Journal 61.1 (2011): 157-168. <http://eudml.org/doc/196715>.

@article{Mikulski2011,
abstract = {Let $F=F^\{(A,H,t)\}$ and $F^1=F^\{(A^1,H^1,t^1)\}$ be fiber product preserving bundle functors on the category $\mathcal \{FM\}_m$ of fibred manifolds $Y$ with $m$-dimensional bases and fibred maps covering local diffeomorphisms. We define a quasi-morphism $(A,H,t)\rightarrow (A^1,H^1,t^1)$ to be a $GL(m)$-invariant algebra homomorphism $\nu \colon A\rightarrow A^1$ with $t^1=\nu \circ t$. The main result is that there exists an $\mathcal \{FM\}_m$-natural transformation $FY\rightarrow F^1Y$ depending on a classical linear connection on the base of $Y$ if and only if there exists a quasi-morphism $(A,H,t)\rightarrow (A^1,H^1,t^1)$. As applications, we study existence problems of symmetrization (holonomization) of higher order jets and of holonomic prolongation of general connections.},
author = {Mikulski, Włodzimierz M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {jets; higher order connections; Ehresmann prolongation; Weil functors; bundle functors; natural operators; jet; higher order connection; Ehresmann prolongation; Weil functor; bundle functor; natural operator},
language = {eng},
number = {1},
pages = {157-168},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On symmetrization of jets},
url = {http://eudml.org/doc/196715},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Mikulski, Włodzimierz M.
TI - On symmetrization of jets
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 1
SP - 157
EP - 168
AB - Let $F=F^{(A,H,t)}$ and $F^1=F^{(A^1,H^1,t^1)}$ be fiber product preserving bundle functors on the category $\mathcal {FM}_m$ of fibred manifolds $Y$ with $m$-dimensional bases and fibred maps covering local diffeomorphisms. We define a quasi-morphism $(A,H,t)\rightarrow (A^1,H^1,t^1)$ to be a $GL(m)$-invariant algebra homomorphism $\nu \colon A\rightarrow A^1$ with $t^1=\nu \circ t$. The main result is that there exists an $\mathcal {FM}_m$-natural transformation $FY\rightarrow F^1Y$ depending on a classical linear connection on the base of $Y$ if and only if there exists a quasi-morphism $(A,H,t)\rightarrow (A^1,H^1,t^1)$. As applications, we study existence problems of symmetrization (holonomization) of higher order jets and of holonomic prolongation of general connections.
LA - eng
KW - jets; higher order connections; Ehresmann prolongation; Weil functors; bundle functors; natural operators; jet; higher order connection; Ehresmann prolongation; Weil functor; bundle functor; natural operator
UR - http://eudml.org/doc/196715
ER -

References

top
  1. Doupovec, M., Kolář, I., 10.1007/s006050170010, Monatsh. Math. 134 (2001), 39-50. (2001) MR1872045DOI10.1007/s006050170010
  2. Doupovec, M., Mikulski, W. M., 10.1016/S0034-4877(07)80141-8, Rep. Math. Phys. 60 (2007), 299-316. (2007) Zbl1160.58001MR2374824DOI10.1016/S0034-4877(07)80141-8
  3. Doupovec, M., Mikulski, W. M., 10.1007/s10587-007-0086-0, Czech. Math. J. 57 (2007), 933-945. (2007) MR2356931DOI10.1007/s10587-007-0086-0
  4. Doupovec, M., Mikulski, W. M., On the iteration of higher order jets and prolongation of connections, (to appear) in Ann. Pol. Math. MR2741201
  5. Eck, D. J., 10.1016/0022-4049(86)90076-9, J. Pure Appl. Algebra 42 (1986), 133-140. (1986) Zbl0615.57019MR0857563DOI10.1016/0022-4049(86)90076-9
  6. Ehresmann, C., Extension du calcul des jets aux jets non holonomes, CRAS Paris 239 (1954), 1762-1764. (1954) Zbl0057.15603MR0066734
  7. Ehresmann, C., Sur les connexions d'ordre supérieur, Atti del V. Cong. del' Unione Math. Ital., 1955, Roma Cremonese (1956), 344-346. (1956) 
  8. Kainz, G., Michor, P. W., Natural transformations in differential geometry, Czech. Math. J. 37 (1987), 584-607. (1987) Zbl0654.58001MR0913992
  9. Kolář, I., On the torsion of spaces with connections, Czech. Math. J. 21 (1971), 124-136. (1971) MR0293531
  10. Kolář, I., 10.4310/jdg/1214431173, J. Diff. Geom. 7 (1972), 563-570. (1972) MR0415660DOI10.4310/jdg/1214431173
  11. Kolář, I., Weil bundles as generalized jet spaces, Handbook of Global Analysis, Demeter Krupka and David Saunders, 2008 Elsevier B.V. MR2389643
  12. Kolář, I., 10.4064/-12-1-153-161, Differential Geometry, Banach Center Publications 12 (1984), 153-161. (1984) MR0961078DOI10.4064/-12-1-153-161
  13. Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag (1993). (1993) MR1202431
  14. Kolář, I., Mikulski, W. M., 10.1016/S0926-2245(99)00022-4, Differential Geometry and Its Applications 11 (1999), 105-111. (1999) MR1712139DOI10.1016/S0926-2245(99)00022-4
  15. Leon, M. de, Rodrigues, P. R., Generalized Classical Mechanics and Field Theory, North-Holland Math. Studies 112, 1985, Amsterdam. Zbl0581.58015MR0808964
  16. Libermann, P., Introduction to the theory of semi-holonomic jets, Arch. Math (Brno) 33 (1996), 173-189. (1996) Zbl0915.58004MR1478771
  17. Luciano, O. O., 10.1017/S0027763000002774, Nagoya Math. J. 109 (1988), 69-89. (1988) Zbl0661.58007MR0931952DOI10.1017/S0027763000002774
  18. Mangiarotti, I., Modugno, M., Fibred spaces, jet spaces and connections for field theories, Proc. of Internat. Meeting ``Geometry and Physics'', Florence, 1982, Pitagora Editrice, Bologna 1983 135-165. MR0760841
  19. Mikulski, W. M., 10.4064/ap97-2-1, Ann. Pol. Math 97(2) (2010), 101-121. (2010) Zbl1191.58002MR2570322DOI10.4064/ap97-2-1
  20. Mikulski, W. M., 10.4064/ap81-3-4, Ann. Pol. Math. 81(3) (2003), 261-271. (2003) Zbl1099.58003MR2044627DOI10.4064/ap81-3-4
  21. Modugno, M., Jet involutions and prolongation of connections, Časopis Pěst. Mat. 114 (1989), 356-365. (1989) MR1027231
  22. Saunders, D. J., The Geometry of Jet Bundles, London Math. Soc. Lecture Note Series 142, Cambridge Univ. Press (1989). (1989) Zbl0665.58002MR0989588
  23. Weil, A., Théorie des points proches sur les variétes différientielles, In: Colloque de topol. et géom diff., Strasbourg, 1953 111-117. MR0061455
  24. Vondra, A., Higher-order differential equations represented by connections on prolongations of a fibred manifold, Extracta Math. 15 (2000), 421-512. (2000) MR1825970

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.