On symmetrization of jets
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 1, page 157-168
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMikulski, Włodzimierz M.. "On symmetrization of jets." Czechoslovak Mathematical Journal 61.1 (2011): 157-168. <http://eudml.org/doc/196715>.
@article{Mikulski2011,
abstract = {Let $F=F^\{(A,H,t)\}$ and $F^1=F^\{(A^1,H^1,t^1)\}$ be fiber product preserving bundle functors on the category $\mathcal \{FM\}_m$ of fibred manifolds $Y$ with $m$-dimensional bases and fibred maps covering local diffeomorphisms. We define a quasi-morphism $(A,H,t)\rightarrow (A^1,H^1,t^1)$ to be a $GL(m)$-invariant algebra homomorphism $\nu \colon A\rightarrow A^1$ with $t^1=\nu \circ t$. The main result is that there exists an $\mathcal \{FM\}_m$-natural transformation $FY\rightarrow F^1Y$ depending on a classical linear connection on the base of $Y$ if and only if there exists a quasi-morphism $(A,H,t)\rightarrow (A^1,H^1,t^1)$. As applications, we study existence problems of symmetrization (holonomization) of higher order jets and of holonomic prolongation of general connections.},
author = {Mikulski, Włodzimierz M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {jets; higher order connections; Ehresmann prolongation; Weil functors; bundle functors; natural operators; jet; higher order connection; Ehresmann prolongation; Weil functor; bundle functor; natural operator},
language = {eng},
number = {1},
pages = {157-168},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On symmetrization of jets},
url = {http://eudml.org/doc/196715},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Mikulski, Włodzimierz M.
TI - On symmetrization of jets
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 1
SP - 157
EP - 168
AB - Let $F=F^{(A,H,t)}$ and $F^1=F^{(A^1,H^1,t^1)}$ be fiber product preserving bundle functors on the category $\mathcal {FM}_m$ of fibred manifolds $Y$ with $m$-dimensional bases and fibred maps covering local diffeomorphisms. We define a quasi-morphism $(A,H,t)\rightarrow (A^1,H^1,t^1)$ to be a $GL(m)$-invariant algebra homomorphism $\nu \colon A\rightarrow A^1$ with $t^1=\nu \circ t$. The main result is that there exists an $\mathcal {FM}_m$-natural transformation $FY\rightarrow F^1Y$ depending on a classical linear connection on the base of $Y$ if and only if there exists a quasi-morphism $(A,H,t)\rightarrow (A^1,H^1,t^1)$. As applications, we study existence problems of symmetrization (holonomization) of higher order jets and of holonomic prolongation of general connections.
LA - eng
KW - jets; higher order connections; Ehresmann prolongation; Weil functors; bundle functors; natural operators; jet; higher order connection; Ehresmann prolongation; Weil functor; bundle functor; natural operator
UR - http://eudml.org/doc/196715
ER -
References
top- Doupovec, M., Kolář, I., 10.1007/s006050170010, Monatsh. Math. 134 (2001), 39-50. (2001) MR1872045DOI10.1007/s006050170010
- Doupovec, M., Mikulski, W. M., 10.1016/S0034-4877(07)80141-8, Rep. Math. Phys. 60 (2007), 299-316. (2007) Zbl1160.58001MR2374824DOI10.1016/S0034-4877(07)80141-8
- Doupovec, M., Mikulski, W. M., 10.1007/s10587-007-0086-0, Czech. Math. J. 57 (2007), 933-945. (2007) MR2356931DOI10.1007/s10587-007-0086-0
- Doupovec, M., Mikulski, W. M., On the iteration of higher order jets and prolongation of connections, (to appear) in Ann. Pol. Math. MR2741201
- Eck, D. J., 10.1016/0022-4049(86)90076-9, J. Pure Appl. Algebra 42 (1986), 133-140. (1986) Zbl0615.57019MR0857563DOI10.1016/0022-4049(86)90076-9
- Ehresmann, C., Extension du calcul des jets aux jets non holonomes, CRAS Paris 239 (1954), 1762-1764. (1954) Zbl0057.15603MR0066734
- Ehresmann, C., Sur les connexions d'ordre supérieur, Atti del V. Cong. del' Unione Math. Ital., 1955, Roma Cremonese (1956), 344-346. (1956)
- Kainz, G., Michor, P. W., Natural transformations in differential geometry, Czech. Math. J. 37 (1987), 584-607. (1987) Zbl0654.58001MR0913992
- Kolář, I., On the torsion of spaces with connections, Czech. Math. J. 21 (1971), 124-136. (1971) MR0293531
- Kolář, I., 10.4310/jdg/1214431173, J. Diff. Geom. 7 (1972), 563-570. (1972) MR0415660DOI10.4310/jdg/1214431173
- Kolář, I., Weil bundles as generalized jet spaces, Handbook of Global Analysis, Demeter Krupka and David Saunders, 2008 Elsevier B.V. MR2389643
- Kolář, I., 10.4064/-12-1-153-161, Differential Geometry, Banach Center Publications 12 (1984), 153-161. (1984) MR0961078DOI10.4064/-12-1-153-161
- Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag (1993). (1993) MR1202431
- Kolář, I., Mikulski, W. M., 10.1016/S0926-2245(99)00022-4, Differential Geometry and Its Applications 11 (1999), 105-111. (1999) MR1712139DOI10.1016/S0926-2245(99)00022-4
- Leon, M. de, Rodrigues, P. R., Generalized Classical Mechanics and Field Theory, North-Holland Math. Studies 112, 1985, Amsterdam. Zbl0581.58015MR0808964
- Libermann, P., Introduction to the theory of semi-holonomic jets, Arch. Math (Brno) 33 (1996), 173-189. (1996) Zbl0915.58004MR1478771
- Luciano, O. O., 10.1017/S0027763000002774, Nagoya Math. J. 109 (1988), 69-89. (1988) Zbl0661.58007MR0931952DOI10.1017/S0027763000002774
- Mangiarotti, I., Modugno, M., Fibred spaces, jet spaces and connections for field theories, Proc. of Internat. Meeting ``Geometry and Physics'', Florence, 1982, Pitagora Editrice, Bologna 1983 135-165. MR0760841
- Mikulski, W. M., 10.4064/ap97-2-1, Ann. Pol. Math 97(2) (2010), 101-121. (2010) Zbl1191.58002MR2570322DOI10.4064/ap97-2-1
- Mikulski, W. M., 10.4064/ap81-3-4, Ann. Pol. Math. 81(3) (2003), 261-271. (2003) Zbl1099.58003MR2044627DOI10.4064/ap81-3-4
- Modugno, M., Jet involutions and prolongation of connections, Časopis Pěst. Mat. 114 (1989), 356-365. (1989) MR1027231
- Saunders, D. J., The Geometry of Jet Bundles, London Math. Soc. Lecture Note Series 142, Cambridge Univ. Press (1989). (1989) Zbl0665.58002MR0989588
- Weil, A., Théorie des points proches sur les variétes différientielles, In: Colloque de topol. et géom diff., Strasbourg, 1953 111-117. MR0061455
- Vondra, A., Higher-order differential equations represented by connections on prolongations of a fibred manifold, Extracta Math. 15 (2000), 421-512. (2000) MR1825970
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.