On prolongation of connections

Włodzimierz M. Mikulski

Annales Polonici Mathematici (2010)

  • Volume: 97, Issue: 2, page 101-121
  • ISSN: 0066-2216

Abstract

top
Let Y → M be a fibred manifold with m-dimensional base and n-dimensional fibres. Let r, m,n be positive integers. We present a construction B r of rth order holonomic connections B r ( Γ , ) : Y J r Y on Y → M from general connections Γ:Y → J¹Y on Y → M by means of torsion free classical linear connections ∇ on M. Then we prove that any construction B of rth order holonomic connections B ( Γ , ) : Y J r Y on Y → M from general connections Γ:Y → J¹Y on Y → M by means of torsion free classical linear connections ∇ on M is equal to B r . Applying B r , for any bundle functor F : m , n on fibred (m,n)-manifolds we present a construction q r of rth order holonomic connections q r ( Θ , ) : F Y J r ( F Y ) on FY → M from qth order holonomic connections Θ : Y J q Y on Y → M by means of torsion free classical linear connections ∇ on M (for q=r=1 we have a well-known classical construction ℱ(Γ,∇):FY → J¹(FY)). Applying B r we also construct a so-called (Γ,∇)-lift of a wider class of geometric objects. In Appendix, we present a direct proof of a (recent) result saying that for r ≥ 3 and m ≥ 2 there is no construction A of rth order holonomic connections A ( Γ ) : Y J r Y on Y → M from general connections Γ:Y → J¹Y on Y → M.

How to cite

top

Włodzimierz M. Mikulski. "On prolongation of connections." Annales Polonici Mathematici 97.2 (2010): 101-121. <http://eudml.org/doc/281054>.

@article{WłodzimierzM2010,
abstract = {Let Y → M be a fibred manifold with m-dimensional base and n-dimensional fibres. Let r, m,n be positive integers. We present a construction $B^r$ of rth order holonomic connections $B^r(Γ,∇):Y → J^rY$ on Y → M from general connections Γ:Y → J¹Y on Y → M by means of torsion free classical linear connections ∇ on M. Then we prove that any construction B of rth order holonomic connections $B(Γ,∇):Y → J^rY$ on Y → M from general connections Γ:Y → J¹Y on Y → M by means of torsion free classical linear connections ∇ on M is equal to $B^r$. Applying $B^r$, for any bundle functor $F:ℱℳ_\{m,n\} →ℱℳ$ on fibred (m,n)-manifolds we present a construction $ℱ^r_q$ of rth order holonomic connections $ℱ^r_q(Θ,∇):FY → J^r(FY)$ on FY → M from qth order holonomic connections $Θ:Y → J^qY$ on Y → M by means of torsion free classical linear connections ∇ on M (for q=r=1 we have a well-known classical construction ℱ(Γ,∇):FY → J¹(FY)). Applying $B^r$ we also construct a so-called (Γ,∇)-lift of a wider class of geometric objects. In Appendix, we present a direct proof of a (recent) result saying that for r ≥ 3 and m ≥ 2 there is no construction A of rth order holonomic connections $A(Γ):Y → J^rY$ on Y → M from general connections Γ:Y → J¹Y on Y → M.},
author = {Włodzimierz M. Mikulski},
journal = {Annales Polonici Mathematici},
keywords = {holonomic jet; higher order connection; natural operator; lifting},
language = {eng},
number = {2},
pages = {101-121},
title = {On prolongation of connections},
url = {http://eudml.org/doc/281054},
volume = {97},
year = {2010},
}

TY - JOUR
AU - Włodzimierz M. Mikulski
TI - On prolongation of connections
JO - Annales Polonici Mathematici
PY - 2010
VL - 97
IS - 2
SP - 101
EP - 121
AB - Let Y → M be a fibred manifold with m-dimensional base and n-dimensional fibres. Let r, m,n be positive integers. We present a construction $B^r$ of rth order holonomic connections $B^r(Γ,∇):Y → J^rY$ on Y → M from general connections Γ:Y → J¹Y on Y → M by means of torsion free classical linear connections ∇ on M. Then we prove that any construction B of rth order holonomic connections $B(Γ,∇):Y → J^rY$ on Y → M from general connections Γ:Y → J¹Y on Y → M by means of torsion free classical linear connections ∇ on M is equal to $B^r$. Applying $B^r$, for any bundle functor $F:ℱℳ_{m,n} →ℱℳ$ on fibred (m,n)-manifolds we present a construction $ℱ^r_q$ of rth order holonomic connections $ℱ^r_q(Θ,∇):FY → J^r(FY)$ on FY → M from qth order holonomic connections $Θ:Y → J^qY$ on Y → M by means of torsion free classical linear connections ∇ on M (for q=r=1 we have a well-known classical construction ℱ(Γ,∇):FY → J¹(FY)). Applying $B^r$ we also construct a so-called (Γ,∇)-lift of a wider class of geometric objects. In Appendix, we present a direct proof of a (recent) result saying that for r ≥ 3 and m ≥ 2 there is no construction A of rth order holonomic connections $A(Γ):Y → J^rY$ on Y → M from general connections Γ:Y → J¹Y on Y → M.
LA - eng
KW - holonomic jet; higher order connection; natural operator; lifting
UR - http://eudml.org/doc/281054
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.