Nonlocal Cauchy problems and their controllability for semilinear differential inclusions with lower Scorza-Dragoni nonlinearities
Tiziana Cardinali; Francesco Portigiani; Paola Rubbioni
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 1, page 225-245
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCardinali, Tiziana, Portigiani, Francesco, and Rubbioni, Paola. "Nonlocal Cauchy problems and their controllability for semilinear differential inclusions with lower Scorza-Dragoni nonlinearities." Czechoslovak Mathematical Journal 61.1 (2011): 225-245. <http://eudml.org/doc/196746>.
@article{Cardinali2011,
abstract = {In this paper we prove the existence of mild solutions and the controllability for semilinear differential inclusions with nonlocal conditions. Our results extend some recent theorems.},
author = {Cardinali, Tiziana, Portigiani, Francesco, Rubbioni, Paola},
journal = {Czechoslovak Mathematical Journal},
keywords = {nonlocal conditions; semilinear differential inclusions; selection theorem; mild solutions; lower Scorza-Dragoni property; controllability; nonlocal condition; semilinear differential inclusion; selection theorem; mild solution; lower Scorza-Dragoni property; controllability},
language = {eng},
number = {1},
pages = {225-245},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Nonlocal Cauchy problems and their controllability for semilinear differential inclusions with lower Scorza-Dragoni nonlinearities},
url = {http://eudml.org/doc/196746},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Cardinali, Tiziana
AU - Portigiani, Francesco
AU - Rubbioni, Paola
TI - Nonlocal Cauchy problems and their controllability for semilinear differential inclusions with lower Scorza-Dragoni nonlinearities
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 1
SP - 225
EP - 245
AB - In this paper we prove the existence of mild solutions and the controllability for semilinear differential inclusions with nonlocal conditions. Our results extend some recent theorems.
LA - eng
KW - nonlocal conditions; semilinear differential inclusions; selection theorem; mild solutions; lower Scorza-Dragoni property; controllability; nonlocal condition; semilinear differential inclusion; selection theorem; mild solution; lower Scorza-Dragoni property; controllability
UR - http://eudml.org/doc/196746
ER -
References
top- Abraham, R., Marsden, J. E., Ratiu, T. S., Manifolds, Tensor Analysis, and Applications, Second Edition, Springer-Verlag, New York (1988). (1988) Zbl0875.58002MR0960687
- Al-Omair, R. A., Ibrahim, A. G., Existence of mild solutions of a semilinear evolution differential inclusion with nonlocal conditions, Electron. J. Differential Equations 42 (2009), 11 pp. (2009) MR2495847
- Balachandran, K., Dauer, J. P., 10.1023/A:1019668728098, J. Optim. Theory Appl. 115 (2002), 7-28. (2002) Zbl1023.93010MR1937343DOI10.1023/A:1019668728098
- Boulite, S., Idrissi, A., Maniar, L., 10.1016/j.jmaa.2005.05.006, J. Math. Anal. Appl. 316 (2006), 566-578. (2006) Zbl1105.34036MR2206690DOI10.1016/j.jmaa.2005.05.006
- Bressan, A., Colombo, G., 10.4064/sm-90-1-69-86, Studia Math. 90 (1988), 69-85. (1988) Zbl0677.54013MR0947921DOI10.4064/sm-90-1-69-86
- Byszewski, L., 10.1016/0022-247X(91)90164-U, J. Math. Anal. Appl. 162 (1991), 494-505. (1991) Zbl0748.34040MR1137634DOI10.1016/0022-247X(91)90164-U
- Cardinali, T., Panfili, S., Global mild solutions for semilinear differential inclusions and applications to impulsive problems, PU.M.A. 19 (2008), 1-19. (2008) MR2551816
- Cardinali, T., Portigiani, F., Rubbioni, P., Local mild solutions and impulsive mild solutions for semilinear Cauchy problems involving lower Scorza-Dragoni multifunctions, Topol. Methods Nonlinear Anal. 32 (2008), 247-259. (2008) Zbl1193.34123MR2494057
- Chang, Y.-K., Li, W.-T., Nieto, J. J., 10.1016/j.na.2006.06.018, Nonlinear Anal. 67 (2007), 623-632. (2007) Zbl1128.93005MR2317194DOI10.1016/j.na.2006.06.018
- Górniewicz, L., Ntouyas, S. K., O'Regan, D., Existence results for first and second order semilinear differential inclusions with nonlocal conditions, J. Comput. Anal. Appl. 9 (2007), 287-310. (2007) MR2300434
- Górniewicz, L., Ntouyas, S. K., O'Regan, D., 10.1016/S0034-4877(05)80096-5, Rep. Math. Phys. 56 (2005), 437-470. (2005) MR2190735DOI10.1016/S0034-4877(05)80096-5
- Hernández, E. M., O'Regan, D., 10.1016/j.jfranklin.2008.08.001, J. Franklin Inst. 346 (2009), 95-101. (2009) MR2499965DOI10.1016/j.jfranklin.2008.08.001
- Hu, S., Papageorgiou, N. S., Handbook of Multivalued Analysis. Vol. I: Theory. Mathematics and its Applications, 419, Kluwer Academic Publishers, Dordrecht (1997). (1997) MR1485775
- Hu, S., Papageorgiou, N. S., Handbook of Multivalued Analysis. Vol. II: Applications, Mathematics and its Applications, 500 Kluwer Academic Publishers, Dordrecht (2000). (2000) MR1741926
- Kamenskii, M., Obukhovskii, V. V., Zecca, P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Series in Nonlinear Analysis and Applications, 7, Berlin: de Gruyter (2001). (2001) MR1831201
- Krein, S. G., Linear Differential Equations in Banach Spaces, Amer. Math. Soc., Providence (1971). (1971) MR0342804
- Li, G., Xue, X., 10.1016/S0096-3003(02)00262-X, Appl. Math. Comput. 141 (2003), 375-384. (2003) Zbl1029.93003MR1972917DOI10.1016/S0096-3003(02)00262-X
- Michael, E., 10.2307/1969615, Ann. Math. 63 (1956), 361-382. (1956) Zbl0071.15902MR0077107DOI10.2307/1969615
- Royden, H. L., Real Analysis, Macmillan Publishing Company, New York (1988). (1988) Zbl0704.26006MR1013117
- Sussman, H. J., 10.1023/A:1016540217523, Set-Valued Analysis 10 (2002), 233-285. (2002) MR1926382DOI10.1023/A:1016540217523
- Taylor, A. E., Lay, D. C., Introduction to Functional Analysis, Robert E. Krieger Publishing Co., Inc., Malabar, FL (1986). (1986) Zbl0654.46002MR0862116
- Tolstonogov, A., Differential Inclusions in a Banach Space, Kluwer Academic Publishers, Dordrecht (2000). (2000) Zbl1021.34002MR1888331
- Zhu, L., Li, G., 10.1016/j.jmaa.2007.10.041, J. Math. Anal. Appl. 341 (2008), 660-675. (2008) Zbl1145.34034MR2394114DOI10.1016/j.jmaa.2007.10.041
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.