L estimates of solution for m -Laplacian parabolic equation with a nonlocal term

Pulun Hou; Caisheng Chen

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 2, page 389-400
  • ISSN: 0011-4642

Abstract

top
In this paper, we consider the global existence, uniqueness and L estimates of weak solutions to quasilinear parabolic equation of m -Laplacian type u t - div ( | u | m - 2 u ) = u | u | β - 1 Ω | u | α d x in Ω × ( 0 , ) with zero Dirichlet boundary condition in Ω . Further, we obtain the L estimate of the solution u ( t ) and u ( t ) for t > 0 with the initial data u 0 L q ( Ω ) ( q > 1 ) , and the case α + β < m - 1 .

How to cite

top

Hou, Pulun, and Chen, Caisheng. "$L^\infty $ estimates of solution for $m$-Laplacian parabolic equation with a nonlocal term." Czechoslovak Mathematical Journal 61.2 (2011): 389-400. <http://eudml.org/doc/196752>.

@article{Hou2011,
abstract = {In this paper, we consider the global existence, uniqueness and $L^\{\infty \}$ estimates of weak solutions to quasilinear parabolic equation of $m$-Laplacian type $u_\{t\}-\mathop \{\rm div\}(|\nabla u|^\{m-2\}\nabla u)=u|u|^\{\beta -1\}\int _\{\Omega \} |u|^\{\alpha \} \{\rm d\} x$ in $\Omega \times (0,\infty )$ with zero Dirichlet boundary condition in $\partial \Omega $. Further, we obtain the $L^\{\infty \}$ estimate of the solution $u(t)$ and $\nabla u(t)$ for $t>0$ with the initial data $u_0\in L^q(\Omega )$$(q>1)$, and the case $\alpha +\beta < m-1$.},
author = {Hou, Pulun, Chen, Caisheng},
journal = {Czechoslovak Mathematical Journal},
keywords = {$m$-Laplacian parabolic equations; global existence; uniqueness; $L^\{\infty \}$ estimates; -Laplacian parabolic equation; global existence; uniqueness; estimate},
language = {eng},
number = {2},
pages = {389-400},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$L^\infty $ estimates of solution for $m$-Laplacian parabolic equation with a nonlocal term},
url = {http://eudml.org/doc/196752},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Hou, Pulun
AU - Chen, Caisheng
TI - $L^\infty $ estimates of solution for $m$-Laplacian parabolic equation with a nonlocal term
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 389
EP - 400
AB - In this paper, we consider the global existence, uniqueness and $L^{\infty }$ estimates of weak solutions to quasilinear parabolic equation of $m$-Laplacian type $u_{t}-\mathop {\rm div}(|\nabla u|^{m-2}\nabla u)=u|u|^{\beta -1}\int _{\Omega } |u|^{\alpha } {\rm d} x$ in $\Omega \times (0,\infty )$ with zero Dirichlet boundary condition in $\partial \Omega $. Further, we obtain the $L^{\infty }$ estimate of the solution $u(t)$ and $\nabla u(t)$ for $t>0$ with the initial data $u_0\in L^q(\Omega )$$(q>1)$, and the case $\alpha +\beta < m-1$.
LA - eng
KW - $m$-Laplacian parabolic equations; global existence; uniqueness; $L^{\infty }$ estimates; -Laplacian parabolic equation; global existence; uniqueness; estimate
UR - http://eudml.org/doc/196752
ER -

References

top
  1. Bebernes, J., Bressan, A., 10.1016/0022-0396(82)90028-6, J. Diff. Equ. 44 (1982), 118-133. (1982) Zbl0489.45013MR0651690DOI10.1016/0022-0396(82)90028-6
  2. Chen, C. S., Nakao, M., Ohara, Y., Global existence and gradient estimates for quasilinear parabalic equations of the m -Laplacian type with a strong perturbation, Differ. Integral Equ. 14 (2001), 59-74. (2001) MR1797932
  3. Chen, C. S., 10.1016/S0362-546X(00)00209-1, Nonlinear Analysis 48 (2002), 607-616. (2002) Zbl1081.42502MR1871469DOI10.1016/S0362-546X(00)00209-1
  4. Chen, C. S., 10.1016/j.jmaa.2007.03.093, J. Math. Anal. Appl. 337 (2008), 318-332. (2008) Zbl1132.35016MR2356073DOI10.1016/j.jmaa.2007.03.093
  5. Day, W. A., 10.1090/qam/693879, Quart. Appl. Math. 40 (1983), 468-475. (1983) Zbl0514.35038MR0693879DOI10.1090/qam/693879
  6. Dibendetto, E., Degenerate Parabolic Equations, Springer-Verlag, Berlin (1993). (1993) MR1230384
  7. Engler, H., Kawohl, B., Luckhaus, S., 10.1016/0022-247X(90)90350-O, J. Math. Anal. Appl. 147 (1990), 309-329. (1990) MR1050207DOI10.1016/0022-247X(90)90350-O
  8. Ladyzhenskaya, O. A., Solonnikov, V. A., Uraltseva, N. N., Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, RI (1969). (1969) 
  9. Li, F. C., Xie, C. H., 10.1016/S0898-1221(03)90188-X, Computers Math. Appl. 46 (2003), 1525-1533. (2003) Zbl1060.35055MR2024226DOI10.1016/S0898-1221(03)90188-X
  10. Lions, J. L., Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Paris (1969). (1969) Zbl0189.40603MR0259693
  11. Nakao, M., Chen, C. S., 10.1006/jdeq.1999.3694, J. Diff. Equ. 162 (2000), 224-250. (2000) MR1741878DOI10.1006/jdeq.1999.3694
  12. Ohara, Y., L estimates of solutions of some nonlinear degenerate parabolic equations, Nonlinear Anal. TMA 18 (1992), 413-426. (1992) MR1152718
  13. Ohara, Y., Gradient estimates for some quasilinear parabolic equations with nonmonotonic perturbations, Adv. math. Sci. Appl. 6 (1996), 531-540. (1996) Zbl0865.35018MR1411980
  14. Rouchon, P., 10.1016/S0022-0396(03)00039-1, J. Diff. Equ. 193 (2003), 75-94. (2003) Zbl1035.35014MR1994059DOI10.1016/S0022-0396(03)00039-1
  15. Temam, R., Infinite-Dimensional Dynamical in Mechanics and Physics, Springer-Verlag, New York (1997). (1997) MR1441312
  16. Veron, L., Coércivité et proprietes regularisantes des semigroups nonlineaires dans les espaces de Banach, Faculté des Sciences et Techniques, Université François Rabelais-tours, France (1976). (1976) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.