estimates of solution for -Laplacian parabolic equation with a nonlocal term
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 2, page 389-400
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHou, Pulun, and Chen, Caisheng. "$L^\infty $ estimates of solution for $m$-Laplacian parabolic equation with a nonlocal term." Czechoslovak Mathematical Journal 61.2 (2011): 389-400. <http://eudml.org/doc/196752>.
@article{Hou2011,
abstract = {In this paper, we consider the global existence, uniqueness and $L^\{\infty \}$ estimates of weak solutions to quasilinear parabolic equation of $m$-Laplacian type $u_\{t\}-\mathop \{\rm div\}(|\nabla u|^\{m-2\}\nabla u)=u|u|^\{\beta -1\}\int _\{\Omega \} |u|^\{\alpha \} \{\rm d\} x$ in $\Omega \times (0,\infty )$ with zero Dirichlet boundary condition in $\partial \Omega $. Further, we obtain the $L^\{\infty \}$ estimate of the solution $u(t)$ and $\nabla u(t)$ for $t>0$ with the initial data $u_0\in L^q(\Omega )$$(q>1)$, and the case $\alpha +\beta < m-1$.},
author = {Hou, Pulun, Chen, Caisheng},
journal = {Czechoslovak Mathematical Journal},
keywords = {$m$-Laplacian parabolic equations; global existence; uniqueness; $L^\{\infty \}$ estimates; -Laplacian parabolic equation; global existence; uniqueness; estimate},
language = {eng},
number = {2},
pages = {389-400},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$L^\infty $ estimates of solution for $m$-Laplacian parabolic equation with a nonlocal term},
url = {http://eudml.org/doc/196752},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Hou, Pulun
AU - Chen, Caisheng
TI - $L^\infty $ estimates of solution for $m$-Laplacian parabolic equation with a nonlocal term
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 389
EP - 400
AB - In this paper, we consider the global existence, uniqueness and $L^{\infty }$ estimates of weak solutions to quasilinear parabolic equation of $m$-Laplacian type $u_{t}-\mathop {\rm div}(|\nabla u|^{m-2}\nabla u)=u|u|^{\beta -1}\int _{\Omega } |u|^{\alpha } {\rm d} x$ in $\Omega \times (0,\infty )$ with zero Dirichlet boundary condition in $\partial \Omega $. Further, we obtain the $L^{\infty }$ estimate of the solution $u(t)$ and $\nabla u(t)$ for $t>0$ with the initial data $u_0\in L^q(\Omega )$$(q>1)$, and the case $\alpha +\beta < m-1$.
LA - eng
KW - $m$-Laplacian parabolic equations; global existence; uniqueness; $L^{\infty }$ estimates; -Laplacian parabolic equation; global existence; uniqueness; estimate
UR - http://eudml.org/doc/196752
ER -
References
top- Bebernes, J., Bressan, A., 10.1016/0022-0396(82)90028-6, J. Diff. Equ. 44 (1982), 118-133. (1982) Zbl0489.45013MR0651690DOI10.1016/0022-0396(82)90028-6
- Chen, C. S., Nakao, M., Ohara, Y., Global existence and gradient estimates for quasilinear parabalic equations of the -Laplacian type with a strong perturbation, Differ. Integral Equ. 14 (2001), 59-74. (2001) MR1797932
- Chen, C. S., 10.1016/S0362-546X(00)00209-1, Nonlinear Analysis 48 (2002), 607-616. (2002) Zbl1081.42502MR1871469DOI10.1016/S0362-546X(00)00209-1
- Chen, C. S., 10.1016/j.jmaa.2007.03.093, J. Math. Anal. Appl. 337 (2008), 318-332. (2008) Zbl1132.35016MR2356073DOI10.1016/j.jmaa.2007.03.093
- Day, W. A., 10.1090/qam/693879, Quart. Appl. Math. 40 (1983), 468-475. (1983) Zbl0514.35038MR0693879DOI10.1090/qam/693879
- Dibendetto, E., Degenerate Parabolic Equations, Springer-Verlag, Berlin (1993). (1993) MR1230384
- Engler, H., Kawohl, B., Luckhaus, S., 10.1016/0022-247X(90)90350-O, J. Math. Anal. Appl. 147 (1990), 309-329. (1990) MR1050207DOI10.1016/0022-247X(90)90350-O
- Ladyzhenskaya, O. A., Solonnikov, V. A., Uraltseva, N. N., Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, RI (1969). (1969)
- Li, F. C., Xie, C. H., 10.1016/S0898-1221(03)90188-X, Computers Math. Appl. 46 (2003), 1525-1533. (2003) Zbl1060.35055MR2024226DOI10.1016/S0898-1221(03)90188-X
- Lions, J. L., Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Paris (1969). (1969) Zbl0189.40603MR0259693
- Nakao, M., Chen, C. S., 10.1006/jdeq.1999.3694, J. Diff. Equ. 162 (2000), 224-250. (2000) MR1741878DOI10.1006/jdeq.1999.3694
- Ohara, Y., estimates of solutions of some nonlinear degenerate parabolic equations, Nonlinear Anal. TMA 18 (1992), 413-426. (1992) MR1152718
- Ohara, Y., Gradient estimates for some quasilinear parabolic equations with nonmonotonic perturbations, Adv. math. Sci. Appl. 6 (1996), 531-540. (1996) Zbl0865.35018MR1411980
- Rouchon, P., 10.1016/S0022-0396(03)00039-1, J. Diff. Equ. 193 (2003), 75-94. (2003) Zbl1035.35014MR1994059DOI10.1016/S0022-0396(03)00039-1
- Temam, R., Infinite-Dimensional Dynamical in Mechanics and Physics, Springer-Verlag, New York (1997). (1997) MR1441312
- Veron, L., Coércivité et proprietes regularisantes des semigroups nonlineaires dans les espaces de Banach, Faculté des Sciences et Techniques, Université François Rabelais-tours, France (1976). (1976)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.