Thirty years from the discovery of superconvergence of the finite elements method
Pokroky matematiky, fyziky a astronomie (2003)
- Volume: 48, Issue: 4, page 288-293
- ISSN: 0032-2423
Access Full Article
topHow to cite
topBrandts, Jan, and Křížek, Michal. "Třicet let od objevu superkonvergence metody konečných prvků." Pokroky matematiky, fyziky a astronomie 48.4 (2003): 288-293. <http://eudml.org/doc/196757>.
@article{Brandts2003,
author = {Brandts, Jan, Křížek, Michal},
journal = {Pokroky matematiky, fyziky a astronomie},
language = {cze},
number = {4},
pages = {288-293},
publisher = {Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists},
title = {Třicet let od objevu superkonvergence metody konečných prvků},
url = {http://eudml.org/doc/196757},
volume = {48},
year = {2003},
}
TY - JOUR
AU - Brandts, Jan
AU - Křížek, Michal
TI - Třicet let od objevu superkonvergence metody konečných prvků
JO - Pokroky matematiky, fyziky a astronomie
PY - 2003
PB - Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists
VL - 48
IS - 4
SP - 288
EP - 293
LA - cze
UR - http://eudml.org/doc/196757
ER -
References
top- Babuška, I., Práger, M., Vitásek, E., Numerical processes in differential equations, John Wiley & Sons, New York 1966. (1966) Zbl0156.16003MR0223101
- Bakker, M., A note on Galerkin methods for two-point boundary problem, Numer. Math. 38 (1981/82), 447–453. (1981) MR0654109
- Blum, H., Lin, Q., Rannacher, R., Asymptotic error expansion and Richardson extrapolation for linear finite elements, Numer. Math. 49 (1986), 11–38. (1986) Zbl0594.65082MR0847015
- Brandts, J., Křížek, M., History and future of superconvergence in three-dimensional finite element methods, Proc. Conf. Finite Element Methods: Three-dimensional Problems, GAKUTO Internat. Ser. Math. Sci. Appl., vol. 15, Gakkōtosho, Tokyo 2001, 22–33. (2001) Zbl0994.65114MR1896264
- Douglas, J., Dupont, T., Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary value problems, Topics in Numer. Anal. II, Acad. Press 1973, 89–113. (1973) Zbl0277.65052MR0366044
- Chen, C. M., Huang, Y. Q., High accuracy theory of finite element methods, Hunan Science and Technology Press, Changsha 1995. (1995)
- Hlaváček, I., Chleboun, J., A recovered gradient method applied to smooth optimal shape problems, Appl. Math. 41 (1996), 281–297. (1996) Zbl0870.65050MR1395687
- Křížek, M., Padesát let metody konečných prvků, PMFA 37 (1992), 129–140. (1992)
- Křížek, M., Neittaanmäki, P., On superconvergence techniques, Acta Appl. Math. 9 (1987), 175–198. (1987) Zbl0624.65107MR0900263
- Křížek, M., Neittaanmäki, P., Stenberg, R., Finite Element Methods: Superconvergence, Postprocessing, and A Posteriori Estimates, LN in Pure and Appl. Math., vol. 196, Marcel Dekker, New York 1998. (1998) Zbl0884.00048MR1602809
- Lesaint, P., Zlámal, M., Superconvergence of the gradient of finite element solutions, RAIRO Anal. Numér. 13 (1979), 139–166. (1979) Zbl0412.65051MR0533879
- Oganesjan, L. A., Ruchovec, L. A., An investigation of the rate of convergence of variational-difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary, Ž. Vyčisl. Mat. i Mat. Fiz. 9 (1969), 1102–1120. (1969) MR0295599
- Taylor, A. E., Úvod do funkcionální analýzy, Academia, Praha 1973. (1973)
- Wahlbin, L., Superconvergence in Galerkin finite element methods, LN in Math., vol. 1605, Springer, Berlin 1995. (1605) Zbl0826.65092MR1439050
- Zlámal, M., On the finite element method, Numer. Math. 12 (1968), 394–409. (1968) Zbl0176.16001
- Zlámal, M., Superconvergence and reduced integration in the finite element method, Math. Comp. 32 (1978), 663–685. (1978) Zbl0448.65068MR0495027
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.