Superconvergence of the gradient of finite element solutions

Pierre Lesaint; Milos Zlamal

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1979)

  • Volume: 13, Issue: 2, page 139-166
  • ISSN: 0764-583X

Cite

top

Lesaint, Pierre, and Zlamal, Milos. "Superconvergence of the gradient of finite element solutions." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 13.2 (1979): 139-166. <http://eudml.org/doc/193337>.

@article{Lesaint1979,
author = {Lesaint, Pierre, Zlamal, Milos},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {superconvergence; finite element serendipity family; Gauss-Legendre points; boundary value problems; Dirichlet problem},
language = {eng},
number = {2},
pages = {139-166},
publisher = {EDP Sciences},
title = {Superconvergence of the gradient of finite element solutions},
url = {http://eudml.org/doc/193337},
volume = {13},
year = {1979},
}

TY - JOUR
AU - Lesaint, Pierre
AU - Zlamal, Milos
TI - Superconvergence of the gradient of finite element solutions
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1979
PB - EDP Sciences
VL - 13
IS - 2
SP - 139
EP - 166
LA - eng
KW - superconvergence; finite element serendipity family; Gauss-Legendre points; boundary value problems; Dirichlet problem
UR - http://eudml.org/doc/193337
ER -

References

top
  1. 1 J H BRAMBLE and S R HILBERTBounds foi a Class of Lineai Functionals withApplications to Hermite Interpolation, Numer Math Vol 16, 1971 pp 362-369 Zbl0214.41405MR290524
  2. 2 F BREZZI and L D MARINI, On theNumencal Solution of Plate Bending Problems byHybnd Methods R A I R O Vol 9 R-3, 1975, pp 5-50 Zbl0322.73048
  3. 3 P G CIARLET and P A RAVIART, The Combined Effect of Curved Boundanes and Numencal Integration in Isoparametnc Finite Element Methods The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A K Aziz, Ed , Academic Press, New York, 1972, pp 409-474 Zbl0262.65070MR421108
  4. 4 P DAVIS and P RABINOWITZ, Methods of Numencal Integiation, Academic Press, New York, 1975 Zbl0304.65016MR448814
  5. 5 V GIRAULT, Theory of Finite Différence Methods on Irregular Networks S I AMJ Numer Anal, Vol 11, 1974, pp 260-282 Zbl0296.65049MR431730
  6. 6 P LESAINT, Sur la resolution des systèmes hyperboliques du premier ordre pardesmethodes d'éléments finis, Thesis, Université Pierre-et-Marie-Cune, Pans, 1975 
  7. 7 J NECAS, Les methodes directes en theorie des équations elliptiques Academia, Prague, 1967 MR227584
  8. 8 O C ZIENKIEWICZ, The Finite Element Method in Engineering Science, McGraw Hill London, 1972 Zbl0237.73071MR315970
  9. 9 M ZLAMAL, Some Superconvergence Results in the Finite Element Method Mathematical Aspects of Finite Element Methods Springer Verlag, Berlin, Heidelberg, New York, 1977, pp 353-362 Zbl0366.65050MR488863
  10. 10 M ZLAMAL, Superconveigence and Reduced Integration in the Finite Element Method, Math Comp (to appear) Zbl0448.65068MR495027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.