Order reduction of the Euler-Lagrange equations of higher order invariant variational problems on frame bundles
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 4, page 1063-1076
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBrajerčík, Ján. "Order reduction of the Euler-Lagrange equations of higher order invariant variational problems on frame bundles." Czechoslovak Mathematical Journal 61.4 (2011): 1063-1076. <http://eudml.org/doc/196784>.
@article{Brajerčík2011,
abstract = {Let $\mu \colon FX \rightarrow X$ be a principal bundle of frames with the structure group $\{\rm Gl\}_\{n\}(\mathbb \{R\})$. It is shown that the variational problem, defined by $\{\rm Gl\}_\{n\}(\mathbb \{R\})$-invariant Lagrangian on $J^\{r\} FX$, can be equivalently studied on the associated space of connections with some compatibility condition, which gives us order reduction of the corresponding Euler-Lagrange equations.},
author = {Brajerčík, Ján},
journal = {Czechoslovak Mathematical Journal},
keywords = {Frame bundle; Euler-Lagrange equations; invariant Lagrangian; Euler-Poincaré reduction; frame bundle; Euler-Lagrange equations; invariant Lagrangian; Euler-Poincaré reduction},
language = {eng},
number = {4},
pages = {1063-1076},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Order reduction of the Euler-Lagrange equations of higher order invariant variational problems on frame bundles},
url = {http://eudml.org/doc/196784},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Brajerčík, Ján
TI - Order reduction of the Euler-Lagrange equations of higher order invariant variational problems on frame bundles
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 4
SP - 1063
EP - 1076
AB - Let $\mu \colon FX \rightarrow X$ be a principal bundle of frames with the structure group ${\rm Gl}_{n}(\mathbb {R})$. It is shown that the variational problem, defined by ${\rm Gl}_{n}(\mathbb {R})$-invariant Lagrangian on $J^{r} FX$, can be equivalently studied on the associated space of connections with some compatibility condition, which gives us order reduction of the corresponding Euler-Lagrange equations.
LA - eng
KW - Frame bundle; Euler-Lagrange equations; invariant Lagrangian; Euler-Poincaré reduction; frame bundle; Euler-Lagrange equations; invariant Lagrangian; Euler-Poincaré reduction
UR - http://eudml.org/doc/196784
ER -
References
top- Brajerčík, J., -invariant variational principles on frame bundles, Balkan J. Geom. Appl. 13 (2008), 11-19. (2008) MR2395370
- Brajerčík, J., Krupka, D., 10.1063/1.1901323, J. Math. Phys. 46 (2005), 1-15. (2005) MR2143003DOI10.1063/1.1901323
- López, M. Castrillón, Pérez, P. L. García, Ratiu, T. S., 10.1023/A:1013303320765, Lett. Math. Phys. 58 (2001), 167-180. (2001) MR1876252DOI10.1023/A:1013303320765
- López, M. Castrillón, Pérez, P. L. García, Rodrigo, C., 10.1016/j.difgeo.2007.06.007, Differ. Geom. Appl. 25 (2007), 585-593. (2007) MR2373936DOI10.1016/j.difgeo.2007.06.007
- López, M. Castrillón, Ratiu, T. S., Shkoller, S., 10.1090/S0002-9939-99-05304-6, Proc. Am. Math. Soc. 128 (2000), 2155-2164. (2000) MR1662269DOI10.1090/S0002-9939-99-05304-6
- Dieudonné, J., Treatise on Analysis. Vol. I, Academic Press New York-London (1969). (1969)
- Pérez, P. L. García, Connections and 1-jet fiber bundles, Rend. Sem. Mat. Univ. Padova 47 (1972), 227-242. (1972) MR0315624
- Giachetta, G., Mangiarotti, L., Sardanashvily, G., New Lagrangian and Hamiltonian Methods in Field Theory, World Scientific Singapore (1997). (1997) Zbl0913.58001MR2001723
- Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol. 1, Interscience Publishers/John Wiley & Sons New York/London (1963). (1963) MR0152974
- Kolář, I., On the torsion of spaces with connection, Czech. Math. J. 21 (1971), 124-136. (1971) MR0293531
- Krupka, D., 10.1016/0022-247X(75)90190-0, J. Math. Anal. Appl. 49 (1975), 469-476. (1975) Zbl0312.58003MR0362398DOI10.1016/0022-247X(75)90190-0
- Krupka, D., Local invariants of a linear connection, In: Differential Geometry. Colloq. Math. Soc. János Bolyai, Budapest, 1979, Vol. 31 North Holland Amsterdam (1982), 349-369. (1982) Zbl0513.53038MR0706930
- Krupka, D., Janyška, J., Lectures on Differential Invariants. Folia Fac. Sci. Nat. Univ. Purk. Brunensis, Mathematica 1, University J. E. Purkyně Brno (1990). (1990) MR1108622
- Marsden, J. E., Ratiu, T. S., 10.1007/978-1-4612-2682-6, Springer New York (1994). (1994) MR1304682DOI10.1007/978-1-4612-2682-6
- Saunders, D. J., The Geometry of Jet Bundles. London Mathematical Society Lecture Note Series Vol. 142, Cambridge University Press Cambridge (1989). (1989) MR0989588
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.