Invariant variational problems on principal bundles and conservation laws
Archivum Mathematicum (2011)
- Volume: 047, Issue: 5, page 357-366
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBrajerčík, Ján. "Invariant variational problems on principal bundles and conservation laws." Archivum Mathematicum 047.5 (2011): 357-366. <http://eudml.org/doc/246116>.
@article{Brajerčík2011,
abstract = {In this work, we consider variational problems defined by $G$-invariant Lagrangians on the $r$-jet prolongation of a principal bundle $P$, where $G$ is the structure group of $P$. These problems can be also considered as defined on the associated bundle of the $r$-th order connections. The correspondence between the Euler-Lagrange equations for these variational problems and conservation laws is discussed.},
author = {Brajerčík, Ján},
journal = {Archivum Mathematicum},
keywords = {principal bundle; variational principle; invariant Lagrangian; Euler-Lagrange equations; Noether’s current; conservation law; principal bundle; variational principle; invariant Lagrangian; Euler-Lagrange equations; Noether's current; conservation law},
language = {eng},
number = {5},
pages = {357-366},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Invariant variational problems on principal bundles and conservation laws},
url = {http://eudml.org/doc/246116},
volume = {047},
year = {2011},
}
TY - JOUR
AU - Brajerčík, Ján
TI - Invariant variational problems on principal bundles and conservation laws
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 5
SP - 357
EP - 366
AB - In this work, we consider variational problems defined by $G$-invariant Lagrangians on the $r$-jet prolongation of a principal bundle $P$, where $G$ is the structure group of $P$. These problems can be also considered as defined on the associated bundle of the $r$-th order connections. The correspondence between the Euler-Lagrange equations for these variational problems and conservation laws is discussed.
LA - eng
KW - principal bundle; variational principle; invariant Lagrangian; Euler-Lagrange equations; Noether’s current; conservation law; principal bundle; variational principle; invariant Lagrangian; Euler-Lagrange equations; Noether's current; conservation law
UR - http://eudml.org/doc/246116
ER -
References
top- Brajerčík, J., –invariant variational principles on frame bundles, Balkan J. Geom. Appl. 13 (1) (2008), 11–19. (2008) MR2395370
- Brajerčík, J., 10.1007/s10587-011-0048-4, Czechoslovak Math. J. (2011), to appear. (2011) Zbl1249.53029MR2886257DOI10.1007/s10587-011-0048-4
- Brajerčík, J., Krupka, D., 10.1063/1.1901323, J. Math. Phys. 46 (2005), 1–15, 052903. (2005) Zbl1110.58011MR2143003DOI10.1063/1.1901323
- Castrillón López, M., García, P. L., Ratiu, T. S., 10.1023/A:1013303320765, Lett. Math. Phys. 58 (2001), 167–180. (2001) Zbl1020.58018MR1876252DOI10.1023/A:1013303320765
- Castrillón López, M., García, P. L., Rodrigo, C., 10.1016/j.difgeo.2007.06.007, Differential Geom. Appl. 25 (6) (2007), 585–593. (2007) MR2373936DOI10.1016/j.difgeo.2007.06.007
- Castrillón López, M., Ratiu, T. S., Shkoller, S., 10.1090/S0002-9939-99-05304-6, Proc. Amer. Math. Soc. 128 (7) (2000), 2155–2164. (2000) MR1662269DOI10.1090/S0002-9939-99-05304-6
- Kobayashi, S., Nomizu, K., Foundations of Differential Geometry, Vol. 1, 2, Interscience Publishers, Wiley, New York, 1963. (1963) MR0152974
- Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer Verlag, Berlin, 1993. (1993) MR1202431
- Krupka, D., Some geometric aspects of variational problems in fibered manifold, Folia Fac. Sci. Natur. Univ. Purk. Brun. Phys. 14 (1973). (1973)
- Krupka, D., 10.1016/0022-247X(75)90190-0, J. Math. Anal. Appl. 49 (1975), 469–476. (1975) Zbl0312.58003MR0362398DOI10.1016/0022-247X(75)90190-0
- Krupka, D., Lepagean forms in higher order variational theory, Proc. IUTAM-ISIMM Symposium, Modern Developements in Analytical Mechanics I: Geometrical Dynamics (Benenti, S., Francaviglia, M., Lichnerowicz, A., eds.), Accad. delle Scienze di Torino, Torino, 1983, pp. 197–238. (1983) Zbl0572.58003MR0773488
- Krupka, D., Janyška, J., Lectures on Differential Invariants, Folia Fac. Sci. Natur. Univ. Purk. Brun. Math. 1 (1990). (1990) MR1108622
- Trautman, A., Invariance of Lagrangian systems, General RelativityPapers in honour of J. L. Synge, pp. 85–99, Clarendon Press, Oxford, 1972. (1972) MR0503424
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.