n -flat and n -FP-injective modules

Xiao Yan Yang; Zhongkui Liu

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 2, page 359-369
  • ISSN: 0011-4642

Abstract

top
In this paper, we study the existence of the n -flat preenvelope and the n -FP-injective cover. We also characterize n -coherent rings in terms of the n -FP-injective and n -flat modules.

How to cite

top

Yang, Xiao Yan, and Liu, Zhongkui. "$n$-flat and $n$-FP-injective modules." Czechoslovak Mathematical Journal 61.2 (2011): 359-369. <http://eudml.org/doc/196809>.

@article{Yang2011,
abstract = {In this paper, we study the existence of the $n$-flat preenvelope and the $n$-FP-injective cover. We also characterize $n$-coherent rings in terms of the $n$-FP-injective and $n$-flat modules.},
author = {Yang, Xiao Yan, Liu, Zhongkui},
journal = {Czechoslovak Mathematical Journal},
keywords = {$n$-flat module; $n$-FP-injective module; $n$-coherent ring; cotorsion theory; -flat module; -FP-injective module; -coherent ring; cotorsion theory},
language = {eng},
number = {2},
pages = {359-369},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$n$-flat and $n$-FP-injective modules},
url = {http://eudml.org/doc/196809},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Yang, Xiao Yan
AU - Liu, Zhongkui
TI - $n$-flat and $n$-FP-injective modules
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 359
EP - 369
AB - In this paper, we study the existence of the $n$-flat preenvelope and the $n$-FP-injective cover. We also characterize $n$-coherent rings in terms of the $n$-FP-injective and $n$-flat modules.
LA - eng
KW - $n$-flat module; $n$-FP-injective module; $n$-coherent ring; cotorsion theory; -flat module; -FP-injective module; -coherent ring; cotorsion theory
UR - http://eudml.org/doc/196809
ER -

References

top
  1. Aldrich, S. T., Enochs, E. E., Rozas, J. R. García, Oyonarte, L., 10.1006/jabr.2001.8821, J. Algebra 243 (2001), 615-630. (2001) MR1850650DOI10.1006/jabr.2001.8821
  2. Chase, S. U., 10.1090/S0002-9947-1960-0120260-3, Trans. Am. Math. Soc. 97 (1961), 457-473. (1961) Zbl0100.26602MR0120260DOI10.1090/S0002-9947-1960-0120260-3
  3. Chen, J., Ding, N., 10.1080/00927879608825742, Commun. Algebra 24 (1996), 3211-3216. (1996) Zbl0877.16010MR1402554DOI10.1080/00927879608825742
  4. Ding, N., 10.1080/00927879608825646, Commun. Algebra 24 (1996), 1459-1470. (1996) Zbl0863.16005MR1380605DOI10.1080/00927879608825646
  5. Enochs, E. E., Jenda, O. M. G., Relative Homological Algebra, de Gruyter Expositions in Mathematics, 30 Walter de Gruyter Berlin (2000). (2000) Zbl0952.13001MR1753146
  6. Lee, S. B., 10.1080/00927870209342374, Commun. Algebra 30 (2002), 1119-1126. (2002) Zbl1022.16001MR1892593DOI10.1080/00927870209342374

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.