Coherence relative to a weak torsion class

Zhanmin Zhu

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 2, page 455-474
  • ISSN: 0011-4642

Abstract

top
Let R be a ring. A subclass 𝒯 of left R -modules is called a weak torsion class if it is closed under homomorphic images and extensions. Let 𝒯 be a weak torsion class of left R -modules and n a positive integer. Then a left R -module M is called 𝒯 -finitely generated if there exists a finitely generated submodule N such that M / N 𝒯 ; a left R -module A is called ( 𝒯 , n ) -presented if there exists an exact sequence of left R -modules 0 K n - 1 F n - 1 F 1 F 0 M 0 such that F 0 , , F n - 1 are finitely generated free and K n - 1 is 𝒯 -finitely generated; a left R -module M is called ( 𝒯 , n ) -injective, if Ext R n ( A , M ) = 0 for each ( 𝒯 , n + 1 ) -presented left R -module A ; a right R -module M is called ( 𝒯 , n ) -flat, if Tor n R ( M , A ) = 0 for each ( 𝒯 , n + 1 ) -presented left R -module A . A ring R is called ( 𝒯 , n ) -coherent, if every ( 𝒯 , n + 1 ) -presented module is ( n + 1 ) -presented. Some characterizations and properties of these modules and rings are given.

How to cite

top

Zhu, Zhanmin. "Coherence relative to a weak torsion class." Czechoslovak Mathematical Journal 68.2 (2018): 455-474. <http://eudml.org/doc/294171>.

@article{Zhu2018,
abstract = {Let $R$ be a ring. A subclass $\mathcal \{T\}$ of left $R$-modules is called a weak torsion class if it is closed under homomorphic images and extensions. Let $\mathcal \{T\}$ be a weak torsion class of left $R$-modules and $n$ a positive integer. Then a left $R$-module $M$ is called $\mathcal \{T\}$-finitely generated if there exists a finitely generated submodule $N$ such that $M/N\in \mathcal \{T\}$; a left $R$-module $A$ is called $(\mathcal \{T\},n)$-presented if there exists an exact sequence of left $R$-modules \[ 0\longrightarrow K\_\{n-1\}\longrightarrow F\_\{n-1\}\longrightarrow \cdots \longrightarrow F\_1\longrightarrow F\_0\longrightarrow M\longrightarrow 0 \] such that $F_0,\cdots ,F_\{n-1\}$ are finitely generated free and $K_\{n-1\}$ is $\mathcal \{T\}$-finitely generated; a left $R$-module $M$ is called $(\mathcal \{T\},n)$-injective, if $\{\rm Ext\}^n_R(A, M)=0$ for each $(\mathcal \{T\},n+1)$-presented left $R$-module $A$; a right $R$-module $M$ is called $(\mathcal \{T\},n)$-flat, if $\{\rm Tor\}^R_n(M, A)=0$ for each $(\mathcal \{T\},n+1)$-presented left $R$-module $A$. A ring $R$ is called $(\mathcal \{T\},n)$-coherent, if every $(\mathcal \{T\},n+1)$-presented module is $(n+1)$-presented. Some characterizations and properties of these modules and rings are given.},
author = {Zhu, Zhanmin},
journal = {Czechoslovak Mathematical Journal},
keywords = {$(\mathcal \{T\},n)$-presented module; $(\mathcal \{T\},n)$-injective module; $(\mathcal \{T\},n)$-flat module; $(\mathcal \{T\},n)$-coherent ring},
language = {eng},
number = {2},
pages = {455-474},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Coherence relative to a weak torsion class},
url = {http://eudml.org/doc/294171},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Zhu, Zhanmin
TI - Coherence relative to a weak torsion class
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 455
EP - 474
AB - Let $R$ be a ring. A subclass $\mathcal {T}$ of left $R$-modules is called a weak torsion class if it is closed under homomorphic images and extensions. Let $\mathcal {T}$ be a weak torsion class of left $R$-modules and $n$ a positive integer. Then a left $R$-module $M$ is called $\mathcal {T}$-finitely generated if there exists a finitely generated submodule $N$ such that $M/N\in \mathcal {T}$; a left $R$-module $A$ is called $(\mathcal {T},n)$-presented if there exists an exact sequence of left $R$-modules \[ 0\longrightarrow K_{n-1}\longrightarrow F_{n-1}\longrightarrow \cdots \longrightarrow F_1\longrightarrow F_0\longrightarrow M\longrightarrow 0 \] such that $F_0,\cdots ,F_{n-1}$ are finitely generated free and $K_{n-1}$ is $\mathcal {T}$-finitely generated; a left $R$-module $M$ is called $(\mathcal {T},n)$-injective, if ${\rm Ext}^n_R(A, M)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $A$; a right $R$-module $M$ is called $(\mathcal {T},n)$-flat, if ${\rm Tor}^R_n(M, A)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $A$. A ring $R$ is called $(\mathcal {T},n)$-coherent, if every $(\mathcal {T},n+1)$-presented module is $(n+1)$-presented. Some characterizations and properties of these modules and rings are given.
LA - eng
KW - $(\mathcal {T},n)$-presented module; $(\mathcal {T},n)$-injective module; $(\mathcal {T},n)$-flat module; $(\mathcal {T},n)$-coherent ring
UR - http://eudml.org/doc/294171
ER -

References

top
  1. Chase, S. U., 10.1090/S0002-9947-1960-0120260-3, Trans. Am. Math. Soc. 97 (1960), 457-473. (1960) Zbl0100.26602MR0120260DOI10.1090/S0002-9947-1960-0120260-3
  2. Cheatham, T. J., Stone, D. R., 10.1090/S0002-9939-1981-0593450-2, Proc. Am. Math. Soc. 81 (1981), 175-177. (1981) Zbl0458.16014MR0593450DOI10.1090/S0002-9939-1981-0593450-2
  3. Chen, J., Ding, N., 10.1080/00927879608825742, Commun. Algebra 24 (1996), 3211-3216. (1996) Zbl0877.16010MR1402554DOI10.1080/00927879608825742
  4. Costa, D. L., 10.1080/00927879408825061, Commun. Algebra 22 (1994), 3997-4011. (1994) Zbl0814.13010MR1280104DOI10.1080/00927879408825061
  5. Enochs, E., 10.4153/CMB-1976-054-5, Canad. Math. Bull. 19 (1976), 361-362. (1976) Zbl0346.16020MR0429988DOI10.4153/CMB-1976-054-5
  6. Enochs, E. E., Jenda, O. M. G., 10.1515/9783110803662, De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). (2000) Zbl0952.13001MR1753146DOI10.1515/9783110803662
  7. Enochs, E. E., Jenda, O. M. G., Lopez-Ramos, J. A., 10.7146/math.scand.a-14429, Math. Scand. 94 (2004), 46-62. (2004) Zbl1061.16003MR2032335DOI10.7146/math.scand.a-14429
  8. Jones, M. Finkel, 10.1080/00927878208822745, Commun. Algebra 10 (1982), 719-739. (1982) Zbl0483.16027MR0650869DOI10.1080/00927878208822745
  9. Holm, H., Jørgensen, P., Covers, precovers, and purity, Illinois J. Math. 52 (2008), 691-703. (2008) Zbl1189.16007MR2524661
  10. Mao, L., Ding, N., 10.1142/S0219498811005749, J. Algebra Appl. 11 (2012), 1250047, 16 pages. (2012) Zbl1252.16018MR2928115DOI10.1142/S0219498811005749
  11. Megibben, C., 10.1090/S0002-9939-1970-0294409-8, Proc. Am. Math. Soc. 26 (1970), 561-566. (1970) Zbl0216.33803MR0294409DOI10.1090/S0002-9939-1970-0294409-8
  12. Rotman, J. J., An Introduction to Homological Algebra, Pure and Applied Mathematics 85, Academic Press, Harcourt Brace Jovanovich Publishers, New York-London (1979). (1979) Zbl0441.18018MR0538169
  13. Stenström, B., 10.1112/jlms/s2-2.2.323, J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. (1970) Zbl0194.06602MR0271145DOI10.1112/jlms/s2-2.2.323
  14. Stenström, B., 10.1007/978-3-642-66066-5, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer, New York (1975). (1975) Zbl0296.16001MR0389953DOI10.1007/978-3-642-66066-5
  15. Trlifaj, J., Cover, Envelopes, and Cotorsion Theories, Lecture notes for the workshop. Homological Methods in Module Theory, Cortona (2000). (2000) 
  16. Wisbauer, R., Foundations of Module and Ring Theory. A Handbook for Study and Research, Algebra, Logic and Applications 3, Gordon and Breach Science Publishers, Philadelphia (1991). (1991) Zbl0746.16001MR1144522
  17. Yang, X., Liu, Z., 10.1007/s10587-011-0080-4, Czech. Math. J. 61 (2011), 359-369. (2011) Zbl1249.13011MR2905409DOI10.1007/s10587-011-0080-4
  18. Zhou, D., 10.1081/AGB-120037230, Commun. Algebra 32 (2004), 2425-2441. (2004) Zbl1089.16001MR2100480DOI10.1081/AGB-120037230

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.