Coherence relative to a weak torsion class
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 2, page 455-474
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhu, Zhanmin. "Coherence relative to a weak torsion class." Czechoslovak Mathematical Journal 68.2 (2018): 455-474. <http://eudml.org/doc/294171>.
@article{Zhu2018,
abstract = {Let $R$ be a ring. A subclass $\mathcal \{T\}$ of left $R$-modules is called a weak torsion class if it is closed under homomorphic images and extensions. Let $\mathcal \{T\}$ be a weak torsion class of left $R$-modules and $n$ a positive integer. Then a left $R$-module $M$ is called $\mathcal \{T\}$-finitely generated if there exists a finitely generated submodule $N$ such that $M/N\in \mathcal \{T\}$; a left $R$-module $A$ is called $(\mathcal \{T\},n)$-presented if there exists an exact sequence of left $R$-modules \[ 0\longrightarrow K\_\{n-1\}\longrightarrow F\_\{n-1\}\longrightarrow \cdots \longrightarrow F\_1\longrightarrow F\_0\longrightarrow M\longrightarrow 0 \]
such that $F_0,\cdots ,F_\{n-1\}$ are finitely generated free and $K_\{n-1\}$ is $\mathcal \{T\}$-finitely generated; a left $R$-module $M$ is called $(\mathcal \{T\},n)$-injective, if $\{\rm Ext\}^n_R(A, M)=0$ for each $(\mathcal \{T\},n+1)$-presented left $R$-module $A$; a right $R$-module $M$ is called $(\mathcal \{T\},n)$-flat, if $\{\rm Tor\}^R_n(M, A)=0$ for each $(\mathcal \{T\},n+1)$-presented left $R$-module $A$. A ring $R$ is called $(\mathcal \{T\},n)$-coherent, if every $(\mathcal \{T\},n+1)$-presented module is $(n+1)$-presented. Some characterizations and properties of these modules and rings are given.},
author = {Zhu, Zhanmin},
journal = {Czechoslovak Mathematical Journal},
keywords = {$(\mathcal \{T\},n)$-presented module; $(\mathcal \{T\},n)$-injective module; $(\mathcal \{T\},n)$-flat module; $(\mathcal \{T\},n)$-coherent ring},
language = {eng},
number = {2},
pages = {455-474},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Coherence relative to a weak torsion class},
url = {http://eudml.org/doc/294171},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Zhu, Zhanmin
TI - Coherence relative to a weak torsion class
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 455
EP - 474
AB - Let $R$ be a ring. A subclass $\mathcal {T}$ of left $R$-modules is called a weak torsion class if it is closed under homomorphic images and extensions. Let $\mathcal {T}$ be a weak torsion class of left $R$-modules and $n$ a positive integer. Then a left $R$-module $M$ is called $\mathcal {T}$-finitely generated if there exists a finitely generated submodule $N$ such that $M/N\in \mathcal {T}$; a left $R$-module $A$ is called $(\mathcal {T},n)$-presented if there exists an exact sequence of left $R$-modules \[ 0\longrightarrow K_{n-1}\longrightarrow F_{n-1}\longrightarrow \cdots \longrightarrow F_1\longrightarrow F_0\longrightarrow M\longrightarrow 0 \]
such that $F_0,\cdots ,F_{n-1}$ are finitely generated free and $K_{n-1}$ is $\mathcal {T}$-finitely generated; a left $R$-module $M$ is called $(\mathcal {T},n)$-injective, if ${\rm Ext}^n_R(A, M)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $A$; a right $R$-module $M$ is called $(\mathcal {T},n)$-flat, if ${\rm Tor}^R_n(M, A)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $A$. A ring $R$ is called $(\mathcal {T},n)$-coherent, if every $(\mathcal {T},n+1)$-presented module is $(n+1)$-presented. Some characterizations and properties of these modules and rings are given.
LA - eng
KW - $(\mathcal {T},n)$-presented module; $(\mathcal {T},n)$-injective module; $(\mathcal {T},n)$-flat module; $(\mathcal {T},n)$-coherent ring
UR - http://eudml.org/doc/294171
ER -
References
top- Chase, S. U., 10.1090/S0002-9947-1960-0120260-3, Trans. Am. Math. Soc. 97 (1960), 457-473. (1960) Zbl0100.26602MR0120260DOI10.1090/S0002-9947-1960-0120260-3
- Cheatham, T. J., Stone, D. R., 10.1090/S0002-9939-1981-0593450-2, Proc. Am. Math. Soc. 81 (1981), 175-177. (1981) Zbl0458.16014MR0593450DOI10.1090/S0002-9939-1981-0593450-2
- Chen, J., Ding, N., 10.1080/00927879608825742, Commun. Algebra 24 (1996), 3211-3216. (1996) Zbl0877.16010MR1402554DOI10.1080/00927879608825742
- Costa, D. L., 10.1080/00927879408825061, Commun. Algebra 22 (1994), 3997-4011. (1994) Zbl0814.13010MR1280104DOI10.1080/00927879408825061
- Enochs, E., 10.4153/CMB-1976-054-5, Canad. Math. Bull. 19 (1976), 361-362. (1976) Zbl0346.16020MR0429988DOI10.4153/CMB-1976-054-5
- Enochs, E. E., Jenda, O. M. G., 10.1515/9783110803662, De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). (2000) Zbl0952.13001MR1753146DOI10.1515/9783110803662
- Enochs, E. E., Jenda, O. M. G., Lopez-Ramos, J. A., 10.7146/math.scand.a-14429, Math. Scand. 94 (2004), 46-62. (2004) Zbl1061.16003MR2032335DOI10.7146/math.scand.a-14429
- Jones, M. Finkel, 10.1080/00927878208822745, Commun. Algebra 10 (1982), 719-739. (1982) Zbl0483.16027MR0650869DOI10.1080/00927878208822745
- Holm, H., Jørgensen, P., Covers, precovers, and purity, Illinois J. Math. 52 (2008), 691-703. (2008) Zbl1189.16007MR2524661
- Mao, L., Ding, N., 10.1142/S0219498811005749, J. Algebra Appl. 11 (2012), 1250047, 16 pages. (2012) Zbl1252.16018MR2928115DOI10.1142/S0219498811005749
- Megibben, C., 10.1090/S0002-9939-1970-0294409-8, Proc. Am. Math. Soc. 26 (1970), 561-566. (1970) Zbl0216.33803MR0294409DOI10.1090/S0002-9939-1970-0294409-8
- Rotman, J. J., An Introduction to Homological Algebra, Pure and Applied Mathematics 85, Academic Press, Harcourt Brace Jovanovich Publishers, New York-London (1979). (1979) Zbl0441.18018MR0538169
- Stenström, B., 10.1112/jlms/s2-2.2.323, J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. (1970) Zbl0194.06602MR0271145DOI10.1112/jlms/s2-2.2.323
- Stenström, B., 10.1007/978-3-642-66066-5, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer, New York (1975). (1975) Zbl0296.16001MR0389953DOI10.1007/978-3-642-66066-5
- Trlifaj, J., Cover, Envelopes, and Cotorsion Theories, Lecture notes for the workshop. Homological Methods in Module Theory, Cortona (2000). (2000)
- Wisbauer, R., Foundations of Module and Ring Theory. A Handbook for Study and Research, Algebra, Logic and Applications 3, Gordon and Breach Science Publishers, Philadelphia (1991). (1991) Zbl0746.16001MR1144522
- Yang, X., Liu, Z., 10.1007/s10587-011-0080-4, Czech. Math. J. 61 (2011), 359-369. (2011) Zbl1249.13011MR2905409DOI10.1007/s10587-011-0080-4
- Zhou, D., 10.1081/AGB-120037230, Commun. Algebra 32 (2004), 2425-2441. (2004) Zbl1089.16001MR2100480DOI10.1081/AGB-120037230
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.