Real hypersurfaces in a complex projective space with pseudo- 𝔻 -parallel structure Jacobi operator

Hyunjin Lee; Juan de Dios Pérez; Young Jin Suh

Czechoslovak Mathematical Journal (2010)

  • Volume: 60, Issue: 4, page 1025-1036
  • ISSN: 0011-4642

Abstract

top
We introduce the new notion of pseudo- 𝔻 -parallel real hypersurfaces in a complex projective space as real hypersurfaces satisfying a condition about the covariant derivative of the structure Jacobi operator in any direction of the maximal holomorphic distribution. This condition generalizes parallelness of the structure Jacobi operator. We classify this type of real hypersurfaces.

How to cite

top

Lee, Hyunjin, Pérez, Juan de Dios, and Suh, Young Jin. "Real hypersurfaces in a complex projective space with pseudo-${\mathbb {D}}$-parallel structure Jacobi operator." Czechoslovak Mathematical Journal 60.4 (2010): 1025-1036. <http://eudml.org/doc/196839>.

@article{Lee2010,
abstract = {We introduce the new notion of pseudo-$\mathbb \{D\} $-parallel real hypersurfaces in a complex projective space as real hypersurfaces satisfying a condition about the covariant derivative of the structure Jacobi operator in any direction of the maximal holomorphic distribution. This condition generalizes parallelness of the structure Jacobi operator. We classify this type of real hypersurfaces.},
author = {Lee, Hyunjin, Pérez, Juan de Dios, Suh, Young Jin},
journal = {Czechoslovak Mathematical Journal},
keywords = {real hypersurface; structure Jacobi operator; real hypersurface; structure Jacobi operator},
language = {eng},
number = {4},
pages = {1025-1036},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Real hypersurfaces in a complex projective space with pseudo-$\{\mathbb \{D\}\}$-parallel structure Jacobi operator},
url = {http://eudml.org/doc/196839},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Lee, Hyunjin
AU - Pérez, Juan de Dios
AU - Suh, Young Jin
TI - Real hypersurfaces in a complex projective space with pseudo-${\mathbb {D}}$-parallel structure Jacobi operator
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 4
SP - 1025
EP - 1036
AB - We introduce the new notion of pseudo-$\mathbb {D} $-parallel real hypersurfaces in a complex projective space as real hypersurfaces satisfying a condition about the covariant derivative of the structure Jacobi operator in any direction of the maximal holomorphic distribution. This condition generalizes parallelness of the structure Jacobi operator. We classify this type of real hypersurfaces.
LA - eng
KW - real hypersurface; structure Jacobi operator; real hypersurface; structure Jacobi operator
UR - http://eudml.org/doc/196839
ER -

References

top
  1. Blair, D. E., Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, Vol 203, Birkhäuser Boston Inc. Boston, Ma (2002). (2002) Zbl1011.53001MR1874240
  2. Cho, J. T., Ki, U-H., 10.21099/tkbjm/1496163476, Tsukuba J. Math. 22 (1998), 145-156. (1998) Zbl0983.53034MR1637676DOI10.21099/tkbjm/1496163476
  3. Cho, J. T., Ki, U-H., 10.1023/A:1006585128386, Acta Math. Hungar. 80 (1998), 155-167. (1998) MR1624562DOI10.1023/A:1006585128386
  4. Ki, U-H., Kim, H. J., Lee, A. A., The Jacobi operator of real hypersurfaces in a complex space form, Commun. Korean Math. Soc. 13 (1998), 545-560. (1998) Zbl0969.53026MR1732704
  5. Kimura, M., 10.1007/BF01450843, Math. Ann. 276 (1987), 487-497. (1987) Zbl0605.53023MR0875342DOI10.1007/BF01450843
  6. Lohnherr, M., Reckziegel, H., 10.1023/A:1005000122427, Geom. Dedicata 74 (1999), 267-286. (1999) Zbl0932.53018MR1669351DOI10.1023/A:1005000122427
  7. Niebergall, R., Ryan, P. J., Real hypersurfaces in complex space forms, in Tight and Taut Submanifolds, MSRI Publications 32 (1997), 233-305. (1997) MR1486875
  8. Okumura, M., 10.1090/S0002-9947-1975-0377787-X, Trans. A.M.S. 212 (1975), 355-364. (1975) Zbl0288.53043MR0377787DOI10.1090/S0002-9947-1975-0377787-X
  9. Ortega, M., Pérez, J. D., Santos, F. G., 10.1216/rmjm/1181069385, Rocky Mountain J. Math. 36 (2006), 1603-1613. (2006) MR2285303DOI10.1216/rmjm/1181069385
  10. Pérez, J. D., Santos, F. G., Suh, Y. J., 10.36045/bbms/1161350687, Bull. Belg. Math. Soc. Simon Stevin 13 (2006), 459-469. (2006) MR2307681DOI10.36045/bbms/1161350687
  11. Takagi, R., On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506. (1973) Zbl0274.53062MR0336660
  12. Takagi, R., 10.2969/jmsj/02710043, J. Math. Soc. Japan 27 (1975), 43-53. (1975) MR0355906DOI10.2969/jmsj/02710043
  13. Takagi, R., 10.2969/jmsj/02740507, J. Math. Soc. Japan 27 (1975), 507-516. (1975) MR0400120DOI10.2969/jmsj/02740507

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.