Displaying similar documents to “Real hypersurfaces in a complex projective space with pseudo- 𝔻 -parallel structure Jacobi operator”

Commuting Conditions of the k-th Cho operator with the structure Jacobi operator of real hypersurfaces in complex space forms

Konstantina Panagiotidou, Juan de Dios Pérez (2015)

Open Mathematics

Similarity:

In this paper three dimensional real hypersurfaces in non-flat complex space forms whose k-th Cho operator with respect to the structure vector field ξ commutes with the structure Jacobi operator are classified. Furthermore, it is proved that the only three dimensional real hypersurfaces in non-flat complex space forms, whose k-th Cho operator with respect to any vector field X orthogonal to structure vector field commutes with the structure Jacobi operator, are the ruled ones. Finally,...

Real hypersurfaces in complex space forms concerned with the local symmetry

Seon Mi Lyu, Juan de Dios Pérez, Young Jin Suh (2007)

Czechoslovak Mathematical Journal

Similarity:

This paper consists of two parts. In the first, we find some geometric conditions derived from the local symmetry of the inverse image by the Hopf fibration of a real hypersurface M in complex space form M m ( 4 ϵ ) . In the second, we give a complete classification of real hypersurfaces in M m ( 4 ϵ ) which satisfy the above geometric facts.

Hopf hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster 𝔇 -parallel structure Jacobi operator

Eunmi Pak, Young Suh (2014)

Open Mathematics

Similarity:

Regarding the generalized Tanaka-Webster connection, we considered a new notion of 𝔇 -parallel structure Jacobi operator for a real hypersurface in a complex two-plane Grassmannian G 2(ℂm+2) and proved that a real hypersurface in G 2(ℂm+2) with generalized Tanaka-Webster 𝔇 -parallel structure Jacobi operator is locally congruent to an open part of a tube around a totally geodesic quaternionic projective space ℍP n in G 2(ℂm+2), where m = 2n.

On the structure vector field of a real hypersurface in complex two-plane Grassmannians

Carlos Machado, Juan Pérez (2012)

Open Mathematics

Similarity:

Considering the notion of Jacobi type vector fields for a real hypersurface in a complex two-plane Grassmannian, we prove that if a structure vector field is of Jacobi type it is Killing. As a consequence we classify real hypersurfaces whose structure vector field is of Jacobi type.