Pseudoprimes

Michal Křížek; Lawrence Somer

Pokroky matematiky, fyziky a astronomie (2003)

  • Volume: 48, Issue: 2, page 143-151
  • ISSN: 0032-2423

How to cite

top

Křížek, Michal, and Somer, Lawrence. "Pseudoprvočísla." Pokroky matematiky, fyziky a astronomie 48.2 (2003): 143-151. <http://eudml.org/doc/196855>.

@article{Křížek2003,
author = {Křížek, Michal, Somer, Lawrence},
journal = {Pokroky matematiky, fyziky a astronomie},
keywords = {Fermat theorem; prime; Carmichael number; Fermat theorem; prime; Carmichael number},
language = {cze},
number = {2},
pages = {143-151},
publisher = {Jednota českých matematiků a fyziků},
title = {Pseudoprvočísla},
url = {http://eudml.org/doc/196855},
volume = {48},
year = {2003},
}

TY - JOUR
AU - Křížek, Michal
AU - Somer, Lawrence
TI - Pseudoprvočísla
JO - Pokroky matematiky, fyziky a astronomie
PY - 2003
PB - Jednota českých matematiků a fyziků
VL - 48
IS - 2
SP - 143
EP - 151
LA - cze
KW - Fermat theorem; prime; Carmichael number; Fermat theorem; prime; Carmichael number
UR - http://eudml.org/doc/196855
ER -

References

top
  1. Alford, W. R., Granville, A., Pomerance, C., 10.2307/2118576, Ann. of Math. 140 (1994), 703–722. (1994) Zbl0816.11005MR1283874DOI10.2307/2118576
  2. Baillie, R., Wagstaff, S. S., 10.1090/S0025-5718-1980-0583518-6, Math. Comp. 35 (1980), 1391–1417. (1980) Zbl0458.10003MR0583518DOI10.1090/S0025-5718-1980-0583518-6
  3. Banachiewicz, T., O związku pomiędzy pewnym twierdzeniem matematyków chińskich a formą Fermata na liczby pierwsze, Spraw. Tow. Nauk, Warszawa 2 (1909), 7–11. (1909) 
  4. Beeger, N. G. W. H., 10.2307/2306320, Amer. Math. Monthly 58 (1951), 553–555. (1951) MR0043798DOI10.2307/2306320
  5. Carmichael, R. D., 10.1090/S0002-9904-1910-01892-9, Bull. Amer. Math. Soc. 16 (1910), 232–238. (1910) Zbl41.0226.04MR1558896DOI10.1090/S0002-9904-1910-01892-9
  6. Carmichael, R. D., 10.2307/2972687, Amer. Math. Monthly 19 (1912), 22–27. (1912) Zbl43.0276.17MR1517641DOI10.2307/2972687
  7. Cipolla, M., 10.1007/BF02419871, Annali di Matematica (3) 9 (1904), 139–160. (1904) DOI10.1007/BF02419871
  8. Dickson, L. E., History of the theory of numbers, vol. I, Divisibility and primality, Carnegie Inst., Washington 1919. (1919) 
  9. Duparc, H. J. A., On Carmichael numbers, Poulet numbers, Mersenne numbers and Fermat numbers, Rapport ZW 1953-004, Math. Centrum Amsterdam 1953, 1–7. (1953) Zbl0053.02401MR0062143
  10. Erdős, P., 10.2307/2307640, Amer. Math. Monthly 57 (1950), 404–407. (1950) Zbl0038.18105MR0036259DOI10.2307/2307640
  11. Jarden, D., Existence of an infinitude of composite n for which 2 n - 1 1 ( mod n ) (Hebrew, Engl. Summary), Riveon Lematematika 4 (1950), 65–67. (1950) MR0038995
  12. Jeans, J. H., The converse of Fermat’s theorem, Messenger of Mathematics 27 (1897/98), 174. (1897) Zbl29.0151.02
  13. Joo, I., Phong, B. M., On super Lehmer pseudoprimes, Studia Sci. Math. Hungar. 25 (1990), 121–124. (1990) Zbl0615.10016MR1102204
  14. Kiss, E., 10.1006/hmat.1998.2212, Historia Math. 26 (1999), 68–76. (1999) Zbl0920.11001MR1677471DOI10.1006/hmat.1998.2212
  15. Kiss, P., Some results on Lucas pseudoprimes, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 28 (1985), 153–159. (1985) Zbl0613.10008MR0856986
  16. Korselt, A., Problème chinois, L’Interm. des Math. 6 (1899), 143. (1899) 
  17. Křížek, M., Luca, F., Somer, L., 17 lectures on Fermat numbers: From number theory to geometry, CMS Books in Mathematics, vol. 9, Springer-Verlag, New York 2001. (2001) Zbl1010.11002MR1866957
  18. Lehmer, D. H., 10.2307/2301798, Amer. Math. Monthly 43 (1936), 346–354. (1936) Zbl0014.10204MR1523680DOI10.2307/2301798
  19. Mahnke, D., Leibniz auf der Suche nach einer allgemeinen Primzahlgleichung, Bibliotheca Math. 13 (1913), 29–61. (1913) Zbl43.0068.02
  20. Mąkowski, A., On a problem of Rotkiewicz on pseudoprime numbers, Elem. Math. 29 (1974), 13. (1974) Zbl0271.10010MR0335424
  21. Malo, E., Nombres qui sans être premiers, verifient exceptionnellement une congruence de Fermat, L’Interm. des Math. 10 (1903), 88. (1903) 
  22. Phong, B. M., On super Lucas and super Lehmer pseudoprimes, Studia Sci. Math. Hungar. 23 (1988), 435–442. (1988) Zbl0597.10004MR0982690
  23. Pomerance, C., 10.1090/S0025-5718-1981-0628717-0, Math. Comp. 37 (1981), 587–593. (1981) Zbl0511.10002MR0628717DOI10.1090/S0025-5718-1981-0628717-0
  24. Pomerance, C., A new lower bound for the pseudoprime counting function, Illinois J. Math. 26 (1982), 4–9. (1982) Zbl0474.10035MR0638549
  25. Pomerance, C., Selfridge, J. L., Wagstaff, S. S., 10.1090/S0025-5718-1980-0572872-7, Math. Comp. 35 (1980), 1003–1026. (1980) MR0572872DOI10.1090/S0025-5718-1980-0572872-7
  26. Porubský, Š., Fermat a teorie čísel aneb Problematika dělitelů a dokonalá čísla, In: Matematik Pierre de Fermat (eds. A. Šolcová et al.), Cahiers du CEFRES 28 (2002), 49–86. (2002) 
  27. Poulet, P., Table des nombres composés vérifiant le théeorème de Fermat pour le module 2 jusqu’à 100 . 000 . 000 , Sphinx 8 (1938), 42–52. Errata in Math. Comp. 25 (1971), 944–945, Math. Comp. 26 (1972), 814. (1938) Zbl64.0116.03MR0655816
  28. Ribenboim, P., The book of prime number records, Springer, New York 1988, 1989. (1988) Zbl0642.10001MR1016815
  29. Ribenboim, P., The new book of prime number records, Springer, New York 1996. (1996) Zbl0856.11001MR1377060
  30. Rotkiewicz, A., Sur les nombres pseudopremiers de la forme a x + b , C. R. Acad. Sci. Paris Sér. I Math. 257 (1963), 2601–2604. (1963) Zbl0116.03501MR0162757
  31. Rotkiewicz, A., Sur les formules donnant des nombres pseudopremiers, Colloq. Math. 12 (1964), 69–72. (1964) Zbl0129.02703MR0166138
  32. Rotkiewicz, A., On the pseudoprimes of the form a x + b , Proc. Cambridge Philos. Soc. 63 (1967), 389–392. (1967) Zbl0152.03102MR0209220
  33. Rotkiewicz, A., Pseudoprime numbers and their generalizations, Stud. Assoc. Fac. Sci. Univ. Novi Sad 1972. (1972) Zbl0324.10007MR0330034
  34. Rotkiewicz, A., Lucas and Frobenius pseudoprimes, Proc. of the 10th Internat. Conf. on Fibonacci Numbers and their Applications, Flagstaff, Arizona, 2002 (to appear in Kluwer), 1–21. (2002) MR2076674
  35. Sierpiński, W., Remarque sur une hypothèse des Chinois concernant les nombres ( 2 n - 2 ) / n , Colloq. Math. 1 (1948), 9. (1948) Zbl0037.30903MR0023256
  36. Somer, L., On Fermat d -pseudoprimes, In: Théorie des nombres (éd. J.-M. De Koninck, C. Levesque), Walter de Gruyter, Berlin, New York, 1989, 841–860. (1989) Zbl0687.10004MR1024609
  37. Somer, L., On Lucas d -pseudoprimes, In: Applications of Fibonacci numbers, vol. 7 (eds. G. E. Bergum, A. N. Philippou, A. F. Horadam), Kluwer Academic Publishers, Dordrecht 1998, 369–375. (1998) Zbl0919.11008MR1638463
  38. Steuerwald, R., Über die Kongruenz 2 n - 1 1 ( mod n ) , S.-B. Math.-Nat. Kl., Bayer. Akad. Wiss. 1947, 177. (1947) Zbl0033.10501MR0030541
  39. Szymiczek, K., Note on Fermat numbers, Elem. Math. 21 (1966), 59. (1966) Zbl0142.28904MR0193056
  40. Szymiczek, K., 10.2307/2314051, Amer. Math. Monthly 74 (1967), 35–37. (1967) Zbl0146.26803MR0205921DOI10.2307/2314051

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.