17 necessary and sufficient conditions for the primality of Fermat numbers
We examine primitive roots modulo the Fermat number . We show that an odd integer is a Fermat prime if and only if the set of primitive roots modulo is equal to the set of quadratic non-residues modulo . This result is extended to primitive roots modulo twice a Fermat number.
We show that any factorization of any composite Fermat number into two nontrivial factors can be expressed in the form for some odd and , and integer . We prove that the greatest common divisor of and is 1, , and either or , i.e., for an integer . Factorizations of into more than two factors are investigated as well. In particular, we prove that if then and .
The authors examine the frequency distribution of second-order recurrence sequences that are not -regular, for an odd prime , and apply their results to compute bounds for the frequencies of -singular elements of -regular second-order recurrences modulo powers of the prime . The authors’ results have application to the -stability of second-order recurrence sequences.
A positive integer is said to be a Jordan-Pólya number if it can be written as a product of factorials. We obtain non-trivial lower and upper bounds for the number of Jordan-Pólya numbers not exceeding a given number .
A power digraph modulo , denoted by , is a directed graph with as the set of vertices and as the edge set, where and are any positive integers. In this paper we find necessary and sufficient conditions on and such that the digraph has at least one isolated fixed point. We also establish necessary and sufficient conditions on and such that the digraph contains exactly two components. The primality of Fermat number is also discussed.